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Abstract
Vegetation tolerance to drought depends on an array of site-specific environmental and plant
physiological factors. This tolerance is poorly understood for many forest types despite its
importance for predicting and managing vegetation stress. We analyzed the relationships between
precipitation variability and forest die-off in California’s Sierra Nevada and introduce a new
measure of drought tolerance that emphasizes plant access to subsurface moisture buffers. We
applied this metric to California’s severe 2012–2015 drought, and show that it predicted the
patterns of tree mortality. We then examined future climate scenarios, and found that the
probability of droughts that lead to widespread die-off increases threefold by the end of the 21st
century. Our analysis shows that tree mortality in the Sierra Nevada will likely accelerate in the
coming decades and that forests in the Central and Northern Sierra Nevada that largely escaped
mortality in 2012–2015 are vulnerable to die-off.

1. Introduction

Droughts are among the worst climate hazards soci-
ety faces, creating economic losses of tens to hun-
dreds of billionUS dollars per year (Mishra and Singh
2010, European Commission 2012). Forests are espe-
cially vulnerable to drought in a warming world, as
higher temperatures increase atmospheric moisture
demand, evapotranspiration and soil drying and tree
die-off (Allen et al 2010, Williams et al 2013, Allen
et al 2015, Fettig et al 2019). Future droughts are pro-
jected to become longer, more severe and frequent
in many regions (Wehner et al 2011, Seneviratne
et al 2012, Madakumbura et al 2019), with con-
sequent impacts on vegetation structure and func-
tion. An improved understanding of forest response
to drought is needed to better predict the impact of
climate change on forested ecosystems at large scales.

Such capabilities would help forest managers anti-
cipate patterns of tree vulnerability to drought and
proactively allocate resources and time at local and
landscape scales (Heinimann 2010, Keenan 2015).

Studies investigating the causes of tree die-off
have advanced our knowledge of forest tolerance to
drought, and the underlying interactions of bio-
logical, physiological and environmental factors.
Robust statistical relationships between drought
induced treemortality and variousmetrics of drought
intensity have often revealed ecological thresholds
(Anderegg et al 2015, Paz-Kagan et al 2017, Young
et al 2017, Goulden and Bales 2019). These plant
physiological and environmental predictors of mor-
tality reflect the processes and properties thatmediate
the translation of precipitation deficit to physiolo-
gical damage and ultimate tree death (Anderegg et al
2013).
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The patterns of die-off ultimately depend on both
drought intensity and duration, and processes that
occur over a range of timescales (Mcdowell et al
2008). The biological response to drought stress has
been investigated intensively at the scale of individual
plants based on theoretical (Mcdowell et al 2008)
and experimental (Barbeta and Peñuelas 2016) ana-
lyses, but studies that focus on multidecadal records
and at landscape scales and larger are scarce. Given
potentially large spatial variations in drought toler-
ance and drought severity across landscapes, such lar-
ger scale studies are needed. For example, while large
variation in vegetation stress and tree mortality were
noted across the SierraNevada landscape duringCali-
fornia’s 2012–2015 drought it is unclear whether the
variation arises from forest drought tolerance (e.g.
local water availability or plant physiological factors)
or drought severity.

Comparisons of drought duration and remotely-
sensed vegetation properties can provide an oppor-
tunity to investigate plant response and tolerance
to drought at large spatial scales. The Normalized
Difference Vegetation Index (NDVI) shows strong
responses to droughts lasting 2–4 months in arid and
humid biomes, and 8–10months in semiarid and sub
humid biomes in the world (Vicente-Serrano et al
2013). In a regional setting, a comparison between
California forest water balance and canopy dens-
ity, as measured by canopy water content (CWC)
(Asner et al 2016), showed a comparatively long time
scale response, with coniferous vegetation tolerat-
ing drought for several years before accelerated die-
off (Brodrick et al 2019). Despite the insights from
such comparisons, the controlling factors (e.g. envir-
onmental and tree physiological properties) behind
drought tolerance have not been fully explored.
Efforts to forecast the long-term impact of drought
are also complicated by the likelihood that climate,
environmental conditions, and vegetation distribu-
tions may be different in the coming century (Kelly
and Goulden 2008, Parks et al 2018, Holsinger et al
2019).

Herewe explore the timescale of drought response
for coniferous forests in California’s Sierra Nevada
(Myers et al 2000, Bales et al 2011). This region
experienced a severe drought in 2012–2015 that was
followed by widespread die-off in 2015–2016. We
used data from pre-2012 to identify the duration of
drought that was best correlated with anomalies in
canopy density time series as measured by the Nor-
malized Difference Moisture Index (NDMI) (here-
after referred to as the drought sensitivity timescale
or DST). We then investigate how the pre-2012
DST interacted with drought severity to produce the
observed spatial and temporal patterns of die-off dur-
ing the 2012–2015 drought. Finally, we use output
from state-of-the-art global climate simulations to
examine how changes in multiyear droughts may
amplify future die-off episodes.

2. Methods

2.1. Data
2.1.1. Vegetation indices
We used vegetation indices NDMI, NDVI, and CWC
in this study. NDVI and NDMI were derived from
Landsat 5, 7 and 8 surface reflectance and brightness
temperature images. Data were obtained from USGS
(https://espa.cr.usgs.gov) for the period 1984–2017
after being regridded to a resolution of 0.0002695◦

(approximately 30 m). Snow- and cloud-affected
pixels were removed using the Landsat collection 1
pixel-quality data layers. We used late growing sea-
son NDMI (August–October) in this study. Further
details of the derivation of NDMI and NDVI can
be found in Goulden and Bales (2019). Dry sea-
son (July-August) CWC data at 30 m resolution
(derived in Brodrick et al 2019) was obtained from
https://doi.pangaea.de/10.1594/PANGAEA.897276.

As a direct measurement of tree mortality, we
used the number of dead trees from the Aerial
Detection Survey data from the USFS (www.fs.usda.
gov/detail/r5/forest-grasslandhealth/?cid=fsbdev3_
046696). We re-projected and rasterized the dead
trees per acre (DTPA) ‘1’ product in this geodatabase.

2.1.2. Historical climate data
To derive drought indices, we used high res-
olution monthly precipitation (PR) data (Flint
and Flint 2012), potential evapotranspiration
(PET) and climatic water deficit (CWD) from
the Basin Characterization Model (Flint et al
2013), a high resolution physically-based hydrolo-
gic model developed for California (https://ca.water.
usgs.gov/projects/reg_hydro/basin-characterization-
model.html#provisional). Data from 1980–2016 were
used at 270 m resolution. Annual mean NDVI was
used to calculate the total evapotranspiration (ET)
of water year from an exponential relation between
ET and NDVI. This relation is derived from in situ
measurements of ET, as in Goulden and Bales (2019).

2.1.3. Future climate projections
To assess future drought conditions, we used
monthly precipitation for the period 1850–
2014 from historical simulations and from
2015–2100 for SSP2-4.5, SSP3-7.0 and SSP5-
8.5 warming scenarios (O’Neill et al 2016) from
ten of the state-of-the-art global climate mod-
els (GCMs) (supplementary table 1, available
online at stacks.iop.org/ERL/15/124040/mmedia)
participating in Coupled Model Intercomparison
Project Phase 6 (CMIP6) (Eyring et al 2015). We
selected available models with two or more ensemble
members for all three scenarios at the time of ana-
lysis. In total, 90 ensemble members per scenario
were used. Use of a large ensemble dataset allows
the sampling of extreme conditions without using
statistical resampling methods (Swain et al 2018).
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2.1.4. Predictors of DTPA
We carried out a regression analysis to explain
the spatial variations of dead trees per acre.
Apart from climate and vegetation variables
explained above, the following variables were
extracted for the analyses: To represent resource
competition (Young et al 2017), tree basal area
data were obtained from the LEMMA group
(https://lemma.forestry.oregonstate.edu/data/structu
re-maps, variable: basal area of live trees⩾2.5 cm dia-
meter at breast height). Soil plant available water con-
tent (AWC) was obtained from the US General Soil
Map database (http://websoilsurvey.nrcs.usda.gov/)
by extracting the variable aws0150wta (units: cm).
Subsurface drying can be directly linked to the
amount of evapotranspiration exceeding the precip-
itation (Goulden and Bales 2019). To represent the
vegetation-induced subsurface moisture use, we use
the mean evapotranspiration as a predictor variable.

2.1.5. Conifer fraction and fire
We limited the analysis to conifer dominated forests
in the Sierra Nevada. To mask out non-conifer-
dominated regions, we used the existing vegetation
classification maps from the USFS (www.fs.usda.
gov/detail/r5/landmanagement/resourcemanagement/
?cid=stelprdb5347192). From the vegetation clas-
sification maps, we selected pixels with vegetation
types: Sierran mixed conifer, Ponderosa pine, mont-
ane hardwood-conifer, lodgepole pine, red fir, white
fir, subalpine conifer, Jeffrey pine, Douglas fir, East-
side pine and pinyon-Juniper. We removed fire-
impacted pixels from 1980 through 2016 from the
analysis by using the fire history data product from
California’s Fire and Resource Assessment Program
(https://frap.fire.ca.gov/mapping/gis-data/).

2.1.6. Elevation data
Elevation data were obtained from USGS NED 1 arc-
sec digital elevationmap (https://viewer.nationalmap.
gov/basic/).

All vector data used in this study were
first rasterized and all data were reprojected to
World Geodetic System 1984 using ArcGIS 10.7
(https://desktop.arcgis.com/en/) and the GDAL lib-
rary (https://gdal.org/). All analyses (except for future
projection from climate models) were done after
bilinearly interpolating to the resolution of climate
data (~270 m) using the Climate Data Operator lib-
rary (Schulzweida 2017).

2.2. Procedures
2.2.1. Calculation of drought indices
We consider four drought indices. Standardized
Precipitation Index (SPI; Mckee et al 1993), cumu-
lative precipitation minus evapotranspiration (PR-
ET), standardized precipitation-evapotranspiration
index (SPEI) and CWD. Using observed data, we

calculated drought indices with integration peri-
ods from 1 to 6 years. The cutoff of 6 years was
chosen considering the most significant multiyear
droughts during the historical period in California
(https://water.ca.gov/Water-Basics/Drought). All the
years here are ‘water years’, defined as starting from
October of the previous year and ending in September
of the corresponding year. For example, the 4 year SPI
corresponding to 2015 would be calculated from the
standardized PR from October-2011 to September-
2015 (i.e. water years 2012–2015). PR-ET and CWD
were calculated in a similar manner to SPI and SPEI,
but instead of standardizing, we calculated the cumu-
lative PR-ET and CWD during the drought integra-
tion period. Such cumulative moisture deficits have
been linked with physiological thresholds of tree
mortality (Anderegg et al 2015, Goulden and Bales
2019).

For CMIP6 ensembles, historical and future time
series of each ensemble member for each grid cell
were first merged to obtain a time-series spanning
1850–2100. SPI for 4 year integration periods was cal-
culated from these time series.

2.2.2. Calculation of DST
To determine DST, we calculated temporal correl-
ations between vegetation and drought indices for
each pixel (for the period 1983–2011), and retained
the timescale with the maximum correlation: First,
the vegetation anomaly was obtained for NDMI and
CWC by removing the long termmedian (1984–2011
for NDMI and 1990–2011 for CWC). This can be
considered to be the vegetation change (e.g. dNDMI
and dCWC). For CWD, the long-term (1980–2011)
median was also removed (but not for SPI, SPEI
and PR-ET, since they are already in anomaly form).
Considering the documented delayed response of
NDMI and CWC to drought (Goulden and Bales
2019, supplementary figure 1), a lag of 1 year was
imposed between drought and vegetation anomalies
in the correlation calculations. For example, in the
case of dNDMI and SPI, the 1984–2012 dNDMI
timeseries was correlated with the 1983–2011 water
year SPI timeseries. The drought anomaly time-series
were obtained for various timescales from the four
drought indices and the above steps were repeated,
e.g. 4 year PR-ET in 2015 is the cumulative 2012–
2015 PR-ET and the corresponding vegetation anom-
aly for that year is 2016 dNDMI and dCWC. Finally,
the timescale giving the maximum positive correl-
ation between vegetation anomalies and SPI, SPEI
and PR-ET (or for CWD, the minimum negative
correlation) was obtained as the drought timescale
having maximum influence on vegetation, similar
to the methodology used in Vicente-Serrano et al
(2013). Only pixels where the correlation was signi-
ficant at 80% were plotted in figures and used for
analysis.
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2.2.3. Random forest model
A random forest (RF) regression analysis was car-
ried out to examine drivers of DTPA. RF is a non-
parametric supervised machine learning algorithm
(Breiman 2001). It has the advantage of handling
nonlinear interactions between variables. RF is widely
used in ecological studies to identify the key compon-
ents of complex processes and their relative import-
ance (Bond-Lamberty et al 2014, Kane et al 2015,
Byer and Jin 2017, Paz-Kagan et al 2017, Schwalm
et al 2017, Anderegg et al 2018). Predictor variables
were selected based on previous studies: For drought-
induced precipitation deficit we used the 4 year SPI
of 2015 and mean evapotranspiration (Goulden and
Bales 2019). For the temperature anomaly and atmo-
spheric moisture demand, we used mean PET dur-
ing the drought (i.e. impact of the drought-induced
temperature anomaly) (Williams et al 2013, Allen
et al 2015). For resource competition, we used basal
area (Young et al 2017). For forest drought tolerance,
we used DST. For capacity limitation, we used AWC
(Klos et al 2018) (supplementary figures 2 and 3). The
final random forest regression model was found to
have R2 value of 0.64. For additional details of the RF
regression analysis, see the supplementary methods.

2.2.4. Statistical analysis and significance tests
The Pearson correlation coefficient was calculated in
temporal correlation analyses. A two-tailed Student’s
t-test was applied to calculate p-values and statist-
ical significance, including that of the difference in
means of different scenarios of the multimodel GCM
ensembles.

To obtain large geographic scale patterns of the
DST from the pixel-wise analysis conducted using
high resolution (~270m) data, spatial smoothing was
conducted. For spatial smoothing, K-nearest neigh-
bor (KNN) regression was applied using the python
package scikit-learn (https://scikit-learn.org/stable/).
The KNN regression algorithm employs a user-
specified distance measure and a threshold K to find
the nearest K neighbors to each item. It then assigns
the value based on the average. The K value (the dis-
tance between points during the spatial smoothing)
was taken to be 250 pixels (an approximate distance
of 70 km). This was chosen as a compromise between
smoothing and retaining small scale spatial features
(supplementary figure 4).

3. Results

3.1. Spatial patterns and the interpretation of DST
The drought sensitivity timescale (DST) was calcu-
lated across the Sierra Nevada (see figure 2 for geo-
graphic domain) based on the relationship between
SPI and NDMI (figure 1(a)). Different forest types
in the Sierra Nevada have different DST values,
with mesic stands having DSTs around 3–4 years
(see supplementary discussion). The longest drought

time scales (>4 years) are seen in an elevation band
around 1500–2500 m and a latitude range of 36–
39◦N. Lower or higher elevation forests generally have
shorter timescales (<2 years), depending on latit-
ude. The timescale generally decreaseswith increasing
elevation south of 38.5◦N. Alternative combinations
of drought and canopy moisture indices revealed
time scales that agreed with the spatial distribution
obtained from the SPI-NDMI analysis (supplement-
ary figures 5–7).

A simple interpretation of DST is that it repres-
ents the number of years required to empty a pre-
viously full, subsurface water storage under steady
rate conditions. If this interpretation is correct, we
should be able to multiply the mean drawdown rate
by DST to predict subsurface water storage depth. We
can quantify the subsurface storage depth as the max-
imum rootzone drying during the recent past (2003–
2010) (Maeda et al 2015, Wang-Erlandsson et al
2016) (see supplementary discussion). Carrying out
the multiplication described above, we find that the
simple interpretation of DST holds remarkably well
for Sierran forests (supplementary figure 8). We fur-
ther explore the drivers of DST and its interpretation
in supplementary discussion. DST may be shaped by
complicated environmental, climate and biological
processes across temporal and spatial scales, but pre-
liminary analysis shows that the factors thought to
control plant water drawdown (Fellows and Goulden
2017) such as mean precipitation, evapotranspir-
ation, potential evapotranspiration, plant available
water content, can account for DST variation (from a
random forest regression model with R2 = 0.79, sup-
plementary figure 9, see supplementary discussion).
This confirms that DST reflects the plant accessible
subsurface water buffer.

3.2. Usefulness of DST as a vegetation stress
predictor
We investigated the relationship between pre-2012
DST and the subsequent trajectory of vegeta-
tion stress and mortality during the 2012–2015
drought. The triangles in figures 1(b)–(d) show
the progressive deepening of drought with eleva-
tion. This is measured by the normalized precip-
itation minus evapotranspiration (PR-ET; see tri-
angles in figures 1(b)–(d)) of each water year, accu-
mulated since the beginning of the drought in 2012.
Cumulative PR-ET during a drought can be linked to
subsurface drying (Goulden and Bales 2019). Cumu-
lative PR-ET deficits in three water years (2012–
2014) were severe, as shown by negative values in
all elevation bins below 2700 m. By 2014, the PR-
ET deficit had become extraordinarily large below
2700 m. Figures 1(b)–(d) represent the antecedent
drought conditions affecting vegetation in the sub-
sequent year, as portrayed in the companion pan-
els (figures 1(e)–(g)). Figures 1(e)–(g) show DST as
a function of elevation, i.e. a collapsed version of
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Figure 1. Relationships among DST, drought conditions, and vegetation condition change during the 2012–2015 drought in
Sierra Nevada, California. (a) Spatial patterns of the drought sensitivity timescale (DST; years) associated with the NDMI
anomaly during 1983–2011 period for SPI. Only regions dominated by conifers, unimpaired from wildfires, and have a
statistically significant maximum correlation between NDMI and SPI at 80% are shown. (b)–(d) Drought conditions, elevation
binned. The normalized cumulative precipitation minus evapotranspiration (PR-ET) for each water year since the start of the
drought, 2012. Cumulative PR-ET of each year was normalized by the 1980–2011 mean PR-ET. (e)–(g) Vegetation conditions
associated with the year after the year shown directly to the left in panels (b)–(d); the elevation-binned change in NDMI, dNDMI,
divided by standard deviation (circles with the colorbar), and dead trees per acre (DTPA, magenta stars). dNDMI was calculated
with respect to 2009–2011 mean NDMI as in Goulden and Bales (2019). Error bars represent±0.5 of the standard deviation. For
panels (b)–(g), the elevation bin width is 50 m, and the x-axis is the mean elevation value of each elevation bin. In panels (b)–(g),
only cold, mesic and dry forests (see supplementary discussion) were included for the analysis. The few grid cells where the mean
PR-ET was less than zero were removed from data shown in panels (b)–(g).

figure 1(a). In 2013, the year after the beginning
of the drought, there were only modest losses of
canopy moisture at all elevations (figure 1(e)). By
2014 canopy moisture loss increased for elevations
where the normalized cumulative PR-ET was neg-
ative (figure 1(f)), and by 2015 extreme canopy loss
was seen at these elevations (figure 1(g)).

In 2013, after 1 year of drought, some elevations
showed moderate vegetation stress (figure 1(e)), but
no systematic relationship between DST and veget-
ation stress. However, as the drought lengthened,
vegetation stress became most apparent at those
elevations where DST is lowest and drought sever-
ity is high, i.e. orange/reddish dots in figure 1(f)
(Elevations above about 2700 m are characterized
by a low DST, but they did not experience severe
drought and hence remained unaffected). By 2015,
after an even longer period of extreme precipitation
deficit (at least 3 years), even elevations with the
longest DST showed signs of extreme canopy mois-
ture loss. Only the highest elevations avoided mois-
ture loss (figures 1(b)–(d)). Canopy moisture loss
precedes tree mortality and could ultimately trigger
it (Brodrick and Asner 2017, Paz-Kagan et al 2017,
Goulden and Bales 2019). The predictive power of
DST for vegetation conditions is apparent in directly
measured tree mortality, as shown in figures 1(e)–
(g). Very low tree mortality is seen in 2013, similar
to the background rate (Byer and Jin 2017). By 2014

values were slightly higher for those elevations with
signs of vegetation stress, and relatively low DST val-
ues (orange/reddish dots in figure 1(f)). By 2015 a
dramatic increase in tree mortality is seen everywhere
except the highest elevations.

These results suggest that both DST and drought
severity are useful predictors of the progression of
vegetation stress during drought. To test this conclu-
sion further, we examine the geographical variation in
treemortality at lower elevations of the Sierra Nevada
(figure 1(a)). Figure 2(b) shows the observed DTPA
at the end of the drought. In the low elevations of the
Southern Sierra, where DST is low (figure 1(a), sup-
plementary figure 6), the die-off is high. By contrast,
the low elevations of the Northern Sierra, where DST
is similarly low, little tree mortality occurred. Clearly
the early signs of vegetation stress at low elevations
(figure 1(f)), and the higher levels of eventual tree
mortality (figure 1(g)) came from the southern por-
tion of the Sierra Nevada. This spatial pattern appears
to reflect the greater precipitation shortfall in the
south relative to the north (figure 2(a)).

To test this hypothesis, we predicted the spatial
distribution of tree die-off assuming the entire Sierra
Nevada faced a precipitation deficit as large as that
seen in the southern part (i.e. 4 year SPI = −2.5).
The hypothetical distribution is generated with a
model of DTPA based on random forest regres-
sion. As predictors, we use direct and indirect factors
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Figure 2. Precipitation deficit and tree die-off in Sierra Nevada, California. (a) The 4 year Standardized Precipitation Index (SPI)
of 2015. (b) Observed dead trees per acre (DTPA) during the 2012–2015 drought, calculated as the maximum number of dead
trees observed at any time in areal detection surveys done by USFS during the summers of 2013–2016. (c) Dead trees per acre
predicted using the random forest model (see Methods) for a 4 year drought with a uniform 4 year SPI of−2.5 over whole Sierra
Nevada forests. In (b) and (c), only the regions dominated by conifers, unimpaired by wildfires, and have a statistically significant
maximum correlation between NDMI and SPI at 80% are shown.

Figure 3. Future projections of precipitation and increase in extreme droughts in California. (a) Historical (1969–2019) and
projected future (2050–2100) distributions of 4 year SPI from available CMIP6 models for California. The future projection is
based on the forcing scenario SSP5-8.5. For each model, all 4 year SPI values from all ensembles were averaged over California,
pooled together, and binned for the SPI range−2.5–2.5. The bin width is 0.5. The multimodel mean and the standard deviation
of each bin are shown. (b) Historical (1969–2019) and projected future (2050–2100) frequency of droughts severe than the
2012–2015 drought from the available CMIP6 models, based on 4 year SPI. Three future forcing scenarios spanning a large range
of future emissions outcomes are shown (SSP2-4.5, SSP3-7.0 and SSP5-8.5). Error bars represent±0.5 of the standard deviation.
The California area-averaged observed 4 year SPI for the recent drought was taken as−1.71 from the west-wide drought tracker
(https://wrcc.dri.edu/wwdt/).

contributing to drought severity (4 year SPI, mean
potential evaporation during the drought, mean
evapotranspiration, basal area) and drought tolerance
to tree die-off (DST, plant available water capacity)
(modelR2= 0.64). Themodel predicts thatmesic and
dry forests in central and northwestern regions of the
Sierra Nevada (figure 1(a)) suffer marked tree die-off

(figure 2(c)), consistent with their low DST values.
Thus, differences in drought severity can account for
the differences in treemortality in those low elevation
zones where DTS is comparably low.

To assess the potential of droughts similar to the
2012–2015 California drought in the future, we ana-
lyzed future projections of multiyear precipitation
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variability in California simulated by ten state-of the
art GCMs (see supplementary table 1) participat-
ing in the CMIP6 (Eyring et al 2015). The simu-
lated changes in 4 year SPI occurrence from historical
(1969–2019) to future (2050–2100) under a ‘no emis-
sions reduction policy’ warming scenario, SSP585
(Eyring et al 2015, O’Neill et al 2016), are shown in
figure 3. Under climate change, the precipitation dis-
tribution shifts systematically, resulting in increased
probability of severemultiyear droughts (figure 3(a)).
Examining scenarios associated with lower green-
house gas emissions (figure 3(b)), we see that the
probability of severe droughts similar to 2012–2015
increases with growing emissions. But even for the
lowest emissions scenarios, this increase in frequency
is statistically significant at 99% compared to the
historical simulations. We also note that the future
may bring droughts even more severe than that in
2012–2015, as seen in the emergence of 4 year SPI
anomalies more negative than −2.0 in the SSP585
scenario (figure 3(a)). Such deep droughts would
bring very dry conditions to large swaths of the Sierra
Nevada, killing trees over areas with low DST, as in
the hypothetical case of figure 2(c).

4. Discussion and conclusions

Using multiple drought and vegetation indices span-
ning many decades, we obtain a drought sensitivity
timescale, DST, which can also be interpreted as the
plant water buffer. We find that forests on the low-
elevation western slopes and high-elevation eastern
slopes of the Sierra Nevada have the shortest DST,
and hence the least tolerance to drought. When DST
is combined with drought severity, it can be used to
map the progression of vegetation stress during the
2012–2015 drought. The low elevation slopeswere the
first to respond to the drought as it deepened, consist-
ent with their low DST values. However, the largest
ultimate response, and the greatest tree mortality,
occurred in the southern low elevations. We demon-
strate that this enhanced response can be explained
by the spatial patterns of drought severity. The low
elevation forests in the central and northern Sierra
Nevada are also vulnerable to drought and would
have likely experienced extensive dieback if the 2012–
2015 drought had extended further north.

Previous work suggests interannual precipitation
variability in California will increase in the future
(Swain et al 2018). This work, combined with the
results shown here demonstrating the connection
between tree mortality and multiyear drought, raises
the question of whether Sierra Nevada forests will
experience greater tree mortality in the future. We
found that multiyear droughts in California will
increase with increasing greenhouse gasses based on
state-of-the-art climate model simulations from the
CMIP6 project (Eyring et al 2015). The distribution
of multiyear precipitation anomalies shifts to a drier

regime, and the likelihood of a 4 year drought as deep
(or deeper) than the 2012–2015 event increases by
up to a factor of three by the end of the century.
These results imply a future increase in the likeli-
hood of treemortality in the Sierra Nevada, especially
in areas with a low DST. The low-elevation central
and northern Sierran forests did not exhibit die-off
in the 2012–2015 event; but this does not mean they
are not vulnerable to drought. Future droughts will
almost certainly be distributed differently in space
from the 2012–2015 event (as were the pre-2012
droughts which allowed us to diagnose the sensitiv-
ity of the low-elevation central and northern forests
with low DST).

We note the warmer temperatures accompany-
ing these projected droughts (Dai 2011, 2013), and
that a limitation of our study is that our estimates
of future drought ignore this warming effect. Warm-
ing will increase potential and actual evapotranspira-
tion, which will further increase drought stress when
precipitation is low; thus, our estimates represent a
lower range of possible increases to drought intens-
ity. Conversely, it is possible that plant physiological
responses to elevated CO2 may mitigate tree mortal-
ity impacts of drought, though it is unclear howmuch
tolerance to mortality such responses confer (Swann
et al 2016, Sperry et al 2019). Lastly, future climate
projections are based on coarse resolution GCMs,
and the spatial patterns of climate variables in this
region of complex topography are inadequately rep-
resented. Future research can refine our analysis using
downscaled climate model data, as well as state-of-
the-art land surface and vegetation models to sim-
ulate evapotranspiration changes and physiological
responses to CO2.

Our results imply future changes in Sierra Nevada
ecology. Previous work has shown that projected
changes in mean climate would be associated with
shifts in vegetation distribution (Holsinger et al
2019). Changes in mean conditions may lead to a
decline in Sierra Nevada forests assuming current
vegetation types migrate to new preferred climate
zones (Parks et al 2018). These ecological transitions
may be accelerated by changes in extreme events. Pre-
vious work has shown that tree mortality markedly
impacts subsequent species composition and forest
structure (e.g. Cobb et al 2017). Future increases in
forest-die-off frequency and magnitude would like-
wise be associated with large impacts. The increase in
tree mortality may increase fuel load and wildfire risk
(Ruthrof et al 2016, Stephens et al 2018). Our results
point to the low elevation western slopes of the Sierra
Nevada as a hotspot of increasing die-off. Conversely,
other sub-regions with high drought tolerance may
be more tolerant to ecological change, and may even
become refugia (Morelli et al 2016, Mclaughlin et al
2017). The drought timescale metric and results we
show potentially provide information that may aid
conservation planning.
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