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Abstract
Human activities threaten the effectiveness of protected areas (PAs) in achieving their conservation
goals across the globe. In this study, we contrast the influence of human andmacro-environmental
factors driving fire activity inside and outside PAs. Using area burned between 1984 and 2014 for 11
ecoregions inCanada and theUnited States, we built and compared statisticalmodels offire likelihood
using theMaxEnt software and a set of 11 key anthropogenic, climatic, and physical variables. Overall,
the fullmodel (i.e. including all variables) performed better (adjusted area under the curve ranging
from0.71 to 0.95 for individual ecoregions) than themodel that excluded anthropogenic variables.
Bothmodel types (with andwithout anthropogenic variables) generally performed better inside than
outside the PAs. Climatic variables were usually of foremost importance in explaining fire activity
inside and outside PAs, with anthropogenic variables being the secondmost important predictors,
even inside PAs.While the individual contributions of anthropogenic variables indicate thatfire
activity decreased as of function of increasing human footprint, the anthropogenic effects were often
substantially greater than those of physical features andwere comparable to or even greater than
climatic effects in some densely developed ecoregions, both outside andwithin PAs (e.g.
MediterraneanCalifornia, Eastern Temperate Forest, andTropicalWet Forests). Together, these
results show the pervasive impact of humans on fire regimes inside PAs, as well as outside PAs. Given
the increasing attractiveness of PAs, the implications for adaptive firemanagement beyond the
concept of naturalness in the PAs are discussed. Our assessment of human-altered fire activity could
serve as an indicator of human pressure in PAs; however, we suggest that further analysis is needed to
understand specific interactions among fire, humanpressures, and the environmental conditions at
the scale of PAs.

Significance statement

Protected areas (PAs) are critical for maintaining
habitat integrity, species diversity, and ecosystem
health. Untangling the biophysical and anthropogenic
drivers of fire regimes within PAs is crucial for
developing effective strategies to preserve and manage

biodiversity and ecosystem functions. Our study
reveals the large influence of humans on fire activity in
and outside of PAs. Even in PAs with minimal human
activity, human influence on fire is pervasive and
reduces fire activity. Our assessment of human-altered
fire activity could be used as an indicator to measure
the effectiveness of PAs inmeeting conservation goals.
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Introduction

Effectively managed protected areas (PAs) have been
recognized as critical instruments in nature-conserva-
tion policy [1]. The International Union for Conserva-
tion of Nature defines a PA as a distinct geographic
unit that is recognized andmanaged for the long-term
conservation of nature along with the associated
ecosystem services and cultural values. However, PAs
are under threat globally because of cumulative
stresses from land-use changes, resource extraction,
recreational activities, invasive species, and climate
change [1–5]. In consequence, the effectiveness of PAs
in achieving their conservation goals is questioned
across the globe [6].

Essential to maintaining the ecological integrity of
PAs is the preservation of key natural disturbance
regimes such as wildfire [7, 8]. Fires play a vital ecolo-
gical role in many ecosystems. The fire regime, typi-
cally described in terms of fire frequency, size,
intensity, seasonality, type, and severity, shapes species
distributions andmaintains the structure and function
of fire-prone plant communities [9]. When fire
regimes are altered beyond their natural ranges of
variability, ecosystems can become less resilient to
other disturbances [10]. However, fires are often per-
ceived as socially and economically unwanted dis-
turbances. Driven by safety policies and regulations,
active suppression of fires in PAs has led to the reduc-
tion of fire’s ecological benefits [11, 12]. In an era of
rapid land-use and climate change, reconciling the
management of PAs with the reality of wildfire is a
major challenge [13, 14]. Untangling the biophysical
and anthropogenic drivers of fire regimes within PAs
is therefore a prerequisite to developing effective stra-
tegies to preserve andmanage biodiversity and ecosys-
tem functions [15–17].

Environmental controls on fire regimes in North
America are relatively well understood. Natural varia-
bility in fire activity is the outcome of interactions
among climate, weather, fuel structure and composi-
tion, topography, and ignition sources [18, 19]. Varia-
tion in these top-down and bottom-up interactions
across ecosystems generates spatial heterogeneity in
fire regimes [20, 21]. Climate and weather exert top-
down controls at broad spatial scales, whereas other
factors, such as fuel and topography, are typically con-
sidered bottom-up influences that operate at finer spa-
tial scales [22–24].

The nature of anthropogenic controls on fire
regimes in recent decades is less clear than that of bio-
physical factors [25, 26]. Historical human-fire rela-
tionships (e.g. deliberate burning performed by
aboriginal peoples) and the lack of a purely natural
baseline of fire activity have frustrated efforts to disen-
tangle modern anthropogenic influences from natural
ones [27, 28]. Humans influence fire regimes in ways
that can amplify fire activity (e.g. through the

introduction of ignitions or invasive annual grasses) or
dampen it (e.g. fire suppression, land-management
activities that alter fuel structure and continuity, or the
conversion to non-flammable land cover) [29, 30]. As
a result, the influence of humans on fire activity is not
always linear and it varies at broad geographic scales
(e.g. among sub regions). Despite numerous studies
showing that the human influence on fire is strong and
ubiquitous in North America, its net effect on fire
activity remains unclear [31–35].

An important yet untested and unquantified
assumption is that fire activity in PAs represents an
important contrast to fire activity in other landscapes
that are subject to a heavier anthropogenic footprint.
PAs vary in management intensity and remoteness
from human activities [36], and no PA is altogether
free from anthropogenic influences [36–38]. How-
ever, PAs have been viewed as the best natural baseline
from which to measure andmonitor change or depar-
tures in fire regimes induced by humans [39, 40]. The
degree to which fire regimes in PAs are influenced by
human activities versus environmental drivers at the
continental scale remains largely unexplored.

This study aims to contrast the drivers of fire activ-
ity in PAs versus non-PAs across a range of ecosystems
in North America. Using data from the 1984–2014
period, we applied a modeling approach to (i) deter-
mine whether the proportion of burned area is differ-
ent in PAs and non-PAs, (ii) assess the relative
importance of human, climatic and physical influ-
ences on fire activity, and (iii) evaluate and compare
human influence on fire activity inside and out-
side PAs.

Material andmethods

Study area
The study area consisted of the United States (exclud-
ing Hawaii and the Caribbean islands) and Canada
(excluding the high Arctic zones). This area covers
roughly 18×106 km2 (figure 1) and encompasses
extreme variation in geology, landform, climate,
vegetation, land use, and anthropogenic activities.
Adopting an ecoregion-based approach to assess
subcontinental variability in fire regimes, we subdi-
vided the study area into 13 ecoregions [41], subse-
quently excluding the Marine West Coast Forest and
Tundra ecoregions from analysis because of their very
low fire activity (table S1 is available online at stacks.
iop.org/ERL/14/064007/mmedia). The remaining
11 ecoregions analyzed here ranged in extent from
3×106 km2 (Taiga) to 22×103 km2 (Tropical Wet
Forests). For most ecoregions, climatic conditions
within PAs were similar to those outside PAs
(table S3).
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Data
Protected areas
Polygon data delineating the network of PAs were
obtained from the World Database on PAs (WDPA;
[42]). We selected the four highest conservation
categories of the WDPA: category Ia, Strict Nature
Reserve; category Ib, Wilderness Area; category II,
National Park; category III, Natural Monument or
Feature (figure 1(c)). These categories are recognized
by international bodies such as theUnitedNations and
by many national governments, including those of
Canada and the United States, as the global standard
for defining and recording PAs. Similar to Batllori et al
[43], we excluded PAs with area <10 km2 and
removed nonvegetated and noncombustible PAs (e.g.
urban parks, rivers, wetlands, marine parks). PA
polygons were rasterized in a binary 1 km grid map
representing PAs and non-PAs (assigned values of 1
and 0, respectively). The prevalence of PAs among
ecoregions (excluding the Marine West Coast Forest
and Tundra ecoregions) ranged from 2.41% (Great

Plains) to 48.96% (Tropical West Forests), with an
overall average of 13.9% (figure S1).

Burned area
We used polygon data describing burned area extent
for the United States and Canada for the period
1984–2014. The US data were obtained from the
Monitoring Trends in Burn Severity project [44],
whereas the Canadian data were obtained from the
Canadian Forest Service National Fire Database [45].
A small fraction of both datasets represented pre-
scribed burns (<2% of the total area burned across the
study area). Burned areas smaller than 200 ha were
excluded from analysis because they have been incon-
sistently reported over space and time; they similarly
represented a small fraction of the total area burned
(<7%). For the purpose of the analysis, polygons were
converted to a 1 km gridmap of burned and unburned
pixels (assigned values of 1 and 0, respectively). Total
burned area and percent burned area were summar-
ized by ecoregion and protected status.

Figure 1.The continental study area, showing (a) ecoregions (note: theMarineWest Coast Forest andTundra ecoregions, in gray,
were excluded from the analysis because of lowfire activity; see table S1), (b) protected areas (green) in the four conservation categories
(please note that the limited resolution of themap could affect the display of certain PAs), (c) areas burned (red) between 1984 and
2014; and (d) the human footprint index.
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Climatic data
Gridded climate data were generated with the Clima-
teNA version 5.10 software package (available at
http://tinyurl.com/ClimateNA). The software uses
historical weather station data and an elevation adjust-
ment to calculatemore than 50monthly, seasonal, and
annual climate variables across North America [46].
From these variables, we selected four climate vari-
ables that are known to influence fire activity at the
continental scale in North America: mean annual
precipitation; mean annual relative humidity; the
Hargreave climatic moisture deficit, an annual inte-
grative measure of energy and moisture (precipita-
tion–potential evapotranspiration); and degree-days
below 18 °C (DD<18).

Enduring landscape features
Four variables were used to describe the enduring
landscape features, those components of the landscape
that vary little, if at all, over the time scale of the study.
Three of these variables described topography and
were derived from a digital elevation model at 1 km
resolution. The surface-area ratio, ameasure of surface
roughness, and the heat-load index, a measure of
potential sun exposure, were computed with Geomor-
phometry and GradientMetrics Toolbox 2.0 [47]. The
topographic position index was used to describe the
relative position along a valley-to-peak gradient; this
metric was computed with a 2 kmwindow. The fourth
variable was the percent permanent nonfuel; this
metric was derived from the global land cover for 2005
[48] and quantified the area occupied by nonflam-
mable land cover types, including open water, glaciers,
barren ground, and urban areas.

Human influence
While land and fire management practices vary
substantially inside and outside PAs, explicit data
describing these differences are not available at the NA

scale. Instead, three anthropogenic variables were used
as proxies for human activities across the study area.
The human footprint index (HFI) is a global dataset (at
1 km resolution) that represents anthropogenic effects
on the basis of nine factors, including human density,
human land use and infrastructure (built-up areas,
nighttime lights, land use/cover), and human access
(coastlines, roads, railroads, navigable rivers). HFI
values were obtained from the Wildlife Conservation
Society and the Columbia University Center for
International Earth Science Information Network
[49]. The HFI has been widely used to evaluate
anthropogenic influences on fire regimes in NA
[32, 34]. HFI is also an adequate variable to measure
human pressure and habitat modification within PAs
on a continental to global scale [5]. Roadless volume
(RLV) is a metric of isolation that is based on distance
from roads [50]. High values of this metric indicate a
low level of human influence. RLV was summarized
using a 10 000 km2 moving window average. The
population density (LPD; log10-transformed) was
obtained from the Center for International Earth
Science Information Network [51]. High values of
LPD are concentrated in urban areas; as such, this
variable effectively separates urban from vegetated and
flammable area.

Variables selection
We built two types of models of fire activity using
burned area as a response variable and a pool of 11
explanatory variables divided into three categories
representing climatic, physical and anthropogenic
factors for 11 ecoregions covering most of North
America (table 1). Similar to the study by Parisien et al
[32], the initial dataset contained 34 explanatory
variables based on their ability to predict fire activity in
the study area. However, the number of variables has
been reduced to 11 in order to minimize the degree of
correlation (table S2). Correlations were computed

Table 1.Explanatory variables used in themodels.Mean values by ecoregion and protection status are available in table S2. All variables were
converted to a 1 km rastermap for the data extraction andmodeling.

Variable Description (units)

Climate normals (1981–2010)
CMD Hargreave’s climaticmoisture deficit (mm)
DD<18 Degree-days below 18 °C (degree-days)
MAP Mean annual precipitation(mm)
RH Mean annual relative humidity(%)
Enduring landscape features

SAR Surface area ratio, ameasure of surface roughness (dimensionless)
HLI Heat load index, an index calculating the southwestness of a slope (dimensionless)
TPI Topographic position index computedwith a 2 kmwindow (dimensionless)
PNF Percent nonfuel at a 1000 km2movingwindow size. Nonfuel classified as urban, barren lands, water,

snow, and ice (%)
Human influence

HFI Human footprint, an index of human influence for the year 2004. Calculatedwith a 100 km2moving

window (dimensionless)
RLV Roadless volume calculatedwith a 10 000 km2movingwindow (dimensionless)
LPD Population density for the year 2000 (logged number of people km−2)
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between each pair of variables to identify those
correlated at |r|>0.7 across the study area. Because
we were primarily interested in human influences on
fire activity, LPD and HFI were retained in spite of
correlations |r|>0.70 (table S2). In addition, the
lightning variable was excluded because it was poorly
related to the area burned in almost all areas, as seen in
Parisien et al [32].

Modeling
A systematic random sampling scheme was applied as
follows. Within each ecoregion, each 1 km pixel was
assigned one of the four following categories: PA
burned, PA unburned, non-PA burned, non-PA
unburned. The category with the smallest number of
pixels was used to define the number of observations
for model building that were randomly sampled
within each of the other categories. As such, the same
number of observations outside and within PAs was
used to model fire probability in each ecoregion. The
number of observations (i.e. pixels) used in the model
calibration varied from about 800 in the smallest
ecoregion (Tropical Wet Forests) to more than 51 000
in the largest ecoregion (Northern Forests). For each
sampled pixel, we extracted the entire suite of explana-
tory variables. All data extractions and sampling were
conducted in theR statistical environment [52].

We used MaxEnt 3.3.3k to build two types of pre-
sence-only models for each ecoregion. All 11 explana-
tory variables, including three measures of human
influence, were used to build the first model (termed
the full model). The second model (referred to as the
NoAnthro model) was built using only climatic and
physical (i.e. enduring landscape features) variables.
Comparison of these twomodels for PAs and non-PAs
in each ecoregion allowed us to statistically contrast
the influence of macro-environmental and human
factors driving fire activity and its geographic varia-
tion. The MaxEnt software package is one of the most
popular machine learning tools for species distribu-
tion and environmental niche modeling [53] and has
been extensively used to make spatial predictions in
fire modeling studies [32]. According to the sampling
design described above, MaxEnt extracted a sample of
background locations (i.e. pixels describing the
environment of the entire area of interest) that were
then contrasted with the sample of presence locations
(i.e. burned pixels). Classification accuracy of the
model with MaxEnt is represented with the receiver
operating characteristic area under the curve (AUC).
The AUC is a common evaluation metric for binary
classification problems. AUC values range between 0.5
and 1, where 0.5 denotes accuracy no better than if
samples were randomly selected, and 1 indicates per-
fect classification accuracy. MaxEnt settings were
selected following the method in Parisien et al [32]. To
compare both model types for PAs and non-PAs, and
to avoid overfitting the models, we used 50 model

replicates with 30% of presence localities randomly set
aside as test data. Then we opted for a regularization
value of 4 and did not use the ‘hinge’ feature, which
tends to produce unrealistic (i.e. overfit) responses.
Model evaluation was performed on each of the 50
model replicates, and the values generated were subse-
quently averaged for each ecoregion and protection
status. We used an adjusted area under the receiver
operating characteristic curve (AUC) to account for
the portion of the study area covered by fire in the PAs
and non-PAs. In a presence-only framework, as in this
study, it is impossible to achieve an AUC value of 1
because absences (i.e. false positives) are unknown.
The maximum achievable AUC (AUC max) in a pre-
sence-only framework is equal to 1−a/2, whereais
the proportion of the analysis area covered by fire (i.e.
the prevalence). The adjusted AUC value is calculated
as follows: 1−AUCmax+AUCoriginal.

Variable importance was calculated for the full PA
and non-PA models in each ecoregion as the model
gain associated with each variable. The contributions
were also grouped by each of the three main categories
of drivers: climatic, physical, and anthropogenic. In
addition, to better interpret how human influences
vary across the continent and with protection status,
the relation between fire activity and theHFI variable
was plotted using response curves from the results of
the full model. The response curve was constructed for
a variable of interest by keeping all other variables at
their average values.

Results

Fire activity by ecoregion andprotection status
Burned area varied dramatically across the study area
(figure 2(a); table S1). Most of the fire activity occurred
in two large northern forested ecoregions: the Taiga
and Northern Forests (58.94% of the total area
burned). The second-highest concentration of fire
activity occurred in the western United States, in
Mediterranean California, North American Deserts,
and Temperate Sierras ecoregions (13.21% of the total
area burned). Proportionally, the smallest ecoregions,
located in the southern US, were the most affected by
fire: TropicalWet Forests (44.24%), Temperate Sierras
(19.45%), Mediterranean California (18.12%), and
Southern Semiarid Highlands (17.29%). By compar-
ison, the two largest ecoregions, Taiga and Northern
Forests, had 16.03% and 12.85% of their area burned,
respectively.

Burned area also varied with protection status
(figure 2(b); table S1). Overall, the proportional area
burned in PAs was greater than in non-PAs (26.60%
versus 13.74% on average). Fires burned dis-
proportionately more area in PAs compared to non-
PAs in six ecoregions: Eastern Temperate Forests,
Great Plains, Mediterranean California, Northwestern
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Forested Mountains, Southern Semiarid Highlands,
andTemperate Sierras (figure 2(b)).

Models offire activity and contribution of variables
Across all 11 ecoregions, the full model usually
performed better (adjusted AUC values ranged from
0.71 to 0.95) than theNoAnthromodel (adjusted AUC
values ranged from 0.75 to 0.94; table 2). With few
exceptions, models performed better for PAs than for
non-PAs. Across all 11 ecoregions, climatic variables
had the highest explanatory power (average 55.9% for
non-PAs, 58.9% for PAs), followed by anthropogenic
(27.8% for non-PAs, 23.1% for PAs) and physical
(16.3% for non-PAs, 18.0% for PAs) variables
(figure 3).

The relative contribution of climatic, physical, and
anthropogenic variables in describing fire activity var-
ied among ecoregions, and often by protected status
(figure 3). The climatic category was the most impor-
tant (>50% contribution to model fit) for 7 of the 11
ecoregions, both outside and inside PAs (Great Plains,
Northwestern Forested Mountains, Northern Forests,
Southern Semiarid Highlands, Temperate Sierras,
North American Deserts, and Taiga). The anthro-
pogenic category was themost important in only a few
instances: the Tropical Wet Forests ecoregion both
outside and inside PAs (54.2% and 42.9%, respec-
tively), the Mediterranean California ecoregion out-
side the PAs (46.0%), and the Eastern Temperate
Forest outside the PAs (37.9%). In three ecoregions,
the anthropogenic category was more important
inside than outside the PAs (Taiga, Southern Semiarid
Highlands, and Temperate Sierras). For most ecor-
egions, the physical variables were the least important
predictors. Exceptions to this were the Hudson Plain
ecoregion (inside PAs, 53.6%) andwhere theywere the
second-most important (Mediterranean California,

36.9%; Northwestern Forested Mountains, 27.1%).
The relative contribution of each individual variable by
ecoregion andprotection status is available infigure S2.

The probability of fire usually decreased as a func-
tion of increasingHFI both inside and outside the PAs,
the exception being the PAs of the North American
Deserts ecoregion, where the relation between HFI
and area burned was positive (figure 4). Overall, the
individual contribution of HFI to the full model ten-
ded to be lower inside than outside the PAs, except in
the Temperate Sierra ecoregion. The highest indivi-
dual contributions of HFI were observed for non-PAs
in the TropicalWet Forests,MediterraneanCalifornia,
and Eastern Temperate Forests ecoregions (32.6%,
28.1%, and 17.5%, respectively).

Discussion

Are the drivers offire different inside and
outside PAs?
Contrasting the macro-environmental and human
drivers of fire activity inside and outside PAs in NA can
be complicated. Our results confirm the dominance of
climate as themain top-downdriver offire activity in all
ecoregions, whether directly through effects onweather
conditions, or indirectly by controlling productivity
and dominant vegetation types [54–57]. However, our
approach also reveals that human influence on fire
activity is ubiquitous across the study area, even within
PAs. The full model consistently performed better than
the NoAnthro model both within and outside of PAs.
Our results support previous claims that there are few
purely natural fire regimes in North America [57–59].
This said, we were surprised that the influence of
humans on fire activity in PAs was so pronounced, as
some studies have shown that fire regimes are more
‘natural’ in PAs [39]. Although the drivers of fire in PAs
are often similar to those in non-PAs, we found
important differences between PAs and non-PAs in
certain ecoregions (e.g.Mediterranean California, East-
ernTemperate Forest, andHudsonPlain).

The human influence on the fire activity varied
geographically for PAs, as well as for non-PAs. At the
spatiotemporal scale of this study, anthropogenic
effects were often substantially greater than those of
enduring physical features and were comparable to or
even greater than climatic effects in some densely
developed ecoregions, both outside and within PAs
(e.g. Mediterranean California, Eastern Temperate
Forest, and Tropical Wet Forests). This contrast in the
spatial distribution of human-altered fire regimes has
been particularly well documented at theNA scale [58]
and is highlighted in our study as well (figure S3). In
Mediterranean California, high population density,
dense road networks, and wildland–urban interfaces
have been identified as recurring sources of human-
caused ignition, with a strong effect on fire size, fre-
quency and seasonality [27, 32]. In the eastern United

Figure 2. (a)Proportion of each ecoregion burned between
1984 and 2014, (b) proportion of protected areas (PAs; green
bars) and non-protected areas (non-PAs; gray bars) burned.
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States, including Florida, fire regimes have been
greatly affected by a combination of active fire sup-
pression and human ignition, often for the purpose of
reducing fuels through prescribed burning [57]. In
contrast, the influence of humans on fire activity
remains low in the northwest ecoregions and in
Canada becausemost of the annual area burned comes
fromnatural sources [58, 60].

Howdoes this affect the burned areas?
Our study further reveals that human influence, as
measured with the HFI, showed a negative relation-
ship with burned area across most of Canada and the
United States. Despite the fact that human activities
introduce fire ignitions [57], our results suggest that
humans, via fire suppression, diminished current fire
activity in the study area. A notable exception to the

Figure 3.Relative contributions (%) of categories of variables (C, climatic; E, enduring landscape;H, human) in protected areas (green
bars) and non-protected areas (gray bars) for each ecoregion. The overall contribution by category equals the sumof the individual
contributions of each variable (seefigure S2).

Table 2.Model performance by ecoregion and protection status estimated using the adjusted area
under a receiver operating characteristic curve (AUC). Bold text indicates the bestmodel among the
four possible cases when differences were greater than 0.01.

Fullmodel NoAnthromodel

Ecoregions Non-PAs PAs Non-PAs Pas

Eastern temperate forests 0.802 0.948 0.846 0.938

Great plains 0.804 0.852 0.768 0.797

Hudson plain 0.870 0.714 0.856 0.833

Mediterranean california 0.862 0.894 0.818 0.860

North american deserts 0.790 0.850 0.754 0.823

Northern forests 0.864 0.888 0.870 0.870

Northwestern forestedmountains 0.816 0.841 0.804 0.829

Southern semiarid highlands 0.886 0.926 0.846 0.845

Taiga 0.851 0.840 0.831 0.808

Temperate sierras 0.850 0.876 0.803 0.856

Tropical wet forests 0.912 0.905 0.833 0.760
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typical HFI–fire relationship occurred in the North
American Deserts ecoregion, where PAs showed
increasing fire activity with increasing human activity.
This pattern is consistent with the findings of Parks
et al [39] who suggested that the fire surplus observed
in the PAs of this ecoregion were due to the spread of
flammable non-native grasses, the prevalence of
human ignitions, and the lack of natural ignitions.

For most ecoregions, climatic conditions within
PAswere similar to those outside PAs (table S2), which
suggests that much of the discrepancy in the burned
areas can be attributed to different land uses, fireman-
agement practices, and ignitions. In some ways, our
study allows us to describe continental-scale patterns
in human-induced fire deficits and surpluses. The
most human-altered ecoregions (Eastern Temperate
Forests, Great Plains, Mediterranean California,
Southern Semiarid Highlands, Tropical Wet Forests,
and Temperate Sierras) have higher proportions of
burned area within the PAs compared to non-PAs.

This difference likely reflects less burnable area (e.g.
agricultural and urban areas) and perhaps more effec-
tive fire suppression outside the PAs. Fire suppression
also affects PAs. In northern and less-developed ecor-
egions (e.g. those in boreal forests), where fuel limita-
tion is low, human influence has a smaller yet still
significant effect on fire activity, even in PAs; this pat-
tern is consistent with other recent studies [32, 61].
Results from studies in the western United States and
Canada suggest that many PAs (for example, Jasper
National Park, Canada, Yellowstone National Park,
USA) are in a fire deficit, due in large part to intense
fire suppression activities [61–63]. Southern regions of
the boreal forest also likely experience fire deficits
because intense fire suppression aims to protect popu-
lated places and natural-resource values (e.g. timber,
mines, energy [64]). In contrast, large expanses of
non-forested regions have experienced a fire surplus,
presumably because of introduced annual grasses and
the prevalence of anthropogenic ignitions [39, 63].

Figure 4.Response curves of fire probability as a function of the human footprint index (HFI), based on the fullmodel. For each
ecoregion, the red curve indicatesmean response inside protected areas (PAs), and the blue curve indicatesmean response in non-
protected areas (non-PAs). Standard deviations (gray shading)were calculated from the 50-replicate subset. Numeric values in each
graph indicate the individual contributions (%) of theHFI to the fullmodel in the PAs (red type) and in the non-PAs (blue type). In
each graph, the y-axis represents fire probability, from 0 to 1, and the x-axis indicates values ofHFI, from0 to 100, where high values
indicate high levels of human activities.

8

Environ. Res. Lett. 14 (2019) 064007



Implications for adaptivefiremanagement
Canada and theUnited States have a long history in the
designation andmanagement of PAs: the first national
park in Canada was designated in 1885 (Banff) and in
the US in 1872 (Yellowstone). A century later, with
millions of visits each year (figure 5; [65]), the fire
management of North America’s PA network is more
complicated than perhaps was first anticipated. An
increasing human footprint inside and surrounding
PAs [2–5] potentially brings more human-caused
ignitions. At the same time, increasing human activ-
ities multiply the public assets (including facilities for
tourism and recreation) that may be at risk from fire,
amplifying the need for fire suppression [66]. From
both perspectives, an increase in extent and intensity
of human development could not only diminish the
conservation value of PAs, but also disrupt the natural
fire regime inside PAs.

Achieving a balance between the conservation of
fire-dependent ecosystems and increased human
development requires careful management of fire
regimes in PAs. Following nearly a century of fire
exclusion from some areas, restoring natural fire
regimes in PAs is likely to require a sustained effort
from park managers [67]. However, managers still
struggle with how best to restore fire as a natural ecolo-
gical process and conserve inherent ecosystem resi-
lience [68]. One widely used approach for setting fire
management goals is the assessment of historical range
of variability (HRV), a concept that focuses on quanti-
fying the range of variation that a set of ecological pat-
terns or processes may naturally exhibit over a given
historical period (e.g. range of mean annual burned or
mean fire frequency) [69]. However, implementation
of HRV to restore a natural fire regime on the ground
can be complex and not always successful or desired
[70, 71]. Results from Kruger National Park in South
Africa, suggest that a natural fire policy, in which all
lightning-ignited fires were allowed to burn freely
while all other fires were prevented, suppressed, or
contained, had little if any effect on the extent of area
burned or on the variability in fire intervals [72]. Other
results from well-documented histories of fire man-
agement in western US National Parks, suggest that
HRV may not adequately reflect ecosystem resilience
to futurefire activity [71, 73].

In an era of rapid change, both anthropogenic and
climatic, it is likely that future social-ecological and
environmental conditions lie beyond the HRV in the
PAs [74]. Instead of aiming for conditions based on the
past, some studies have advocated for a more adaptive
approach based on the restoration of landscape hetero-
geneity, in terms of vegetation structure and composi-
tion, bounded by potential socio-ecological thresholds
in order to enhance ecosystems resilience over a range of
possible future conditions [71, 75, 76]. The concept of
thresholds and tipping points have become increasingly
relevant in the context of environmental management,
as stressor–response relationships are better understood

[77]. Consequently, further research is needed to identify
future fire regimes, as well as human footprint thresh-
olds prospectively to inform decision-making in fire
management.

The concept of naturalness was once considered
the key guiding principle when making conservation-
related decisions in PAs and wilderness ecosystems

Figure 5.High-resolutionmapof the human footprint index
(HFI) in and around the threemost frequently visited national
parks inNorthAmerica [65]. The values ofHFI range from0 to
100,where high values indicatehigh levels of human activities.
(a)Great SmokyMountainsNational Park (11×106 visitors
annually), (b)YellowstoneNational Park (4.1×106 visitors
annually, (c)BanffNational Park (3.1×106 visitors annually),
where visitor numbers are for the year 2017; park boundaries
are indicated by gray polygons.
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[68, 78]. However, given the rise in anthropogenic
stressors and climate change, this principle is now
debated as to whether and how we should intervene in
wilderness to achieve the multiple goals and values of
conservation and, at the same time, increase ecosys-
tem integrity and resiliency [70, 79]. Our results high-
light that human-altered fire regimes are ubiquitous in
the PAs across NA and suggests that management
solutions beyond the concept of naturalness are
required. Contrasting the anthropogenic and environ-
mental drivers of fire inside and outside PAs, as we did
it in this study, can therefore provide valuable infor-
mation for determining whether and to what degree
humans have altered the fire regime, and in which
environmental conditions. We suggest that the degree
to which fire regimes are altered within PAs could
serve as an indicator of human pressure in PAs and
that information could be used as a proxy to measure
the effectiveness of PAs and could support the selec-
tion of adaptive firemanagement strategies.

Thewide range of ecosystems covered in this analysis
provides some guidance for developing adaptive fire
management strategies. For example, the contrasting
results between the remote PAs in the Taiga and Cali-
fornia (figure 4) implies different fire management
objectives. For instance, in the northern Taiga, where the
human footprint inside and outside PAs is low, the level
of human intervention required in PAmanagement will
beminimal, whereas in highly populated California, PAs
may require a higher level of human intervention to
achieve multiple conservation goals and values. At the
same time, conservation objectives, land-management
plans, scenery values, level of human activities and socie-
tal goals are unique for eachPA. Firemanagementwithin
PAs may therefore require a case-by-case representation
of land-use objectives and its influence on fire dynamics
and vegetation dynamics, so as to capture the uniqueness
of each PA. Thus, it remains crucial to measure and
restorefire regimes at the PA scale, which accommodates
socio-ecological values; as well as the need for landscape
heterogeneity to increase future resilience [71].

Limitations and conclusions
This study focused on just one attribute of afire regime
—area burned. Further analyses would be needed to
examine the potential effects of human activities on
other fire regime attributes, such as fire frequency,
seasonality, or severity [80]. Althoughwe evaluated the
human influence on area burned regardless of the
ignition source, we acknowledge that human ignitions
are distinct from natural ignitions in terms of their
environmental drivers. However, it is difficult to
disentangle the effect of ignitions on regional fire
regimes, given that naturally ignited (i.e. lightning)
fires are still affected by anthropogenic factors (e.g. fire
suppression, land-cover change). In the United States,
human-caused ignitions are responsible for four times
as many large fires as lightning, and human-related

ignitions have more than tripled the length of the
wildfire season [57, 58], though this varies among
ecoregions. Unfortunately, high-quality consistent
data on seasonality and ignition sources were not
available across the continent. Similarly, data on fire-
management policies and conservation guidelines, as
well as their associated on-the-ground actions, were
not available at the PA level. Integrating this informa-
tion into our analytical models would allow us to
better tease out the other myriad human influences on
fire in PAs. This could, however, provide an interesting
future arena of research.

Human activities threaten the effectiveness of PAs
in preserving key natural ecosystem functions across
the globe [8], including natural fire regimes. Our find-
ings suggest a need for further analysis to understand
specific interactions among fire, human pressures, and
the environment at the scale of PAs. As countries aim
to expand their terrestrial PAs network to meet the
Aichi Target 11 by 2020 [81], this knowledge is needed
to not only manage and restore the resilience of fire-
dependent ecosystems, but also to include socio-eco-
logical drivers in achieving conservation goals. In a
world of rapid changing climate and expanding
human pressures, where historical conditions would
become progressively less meaningful to ecosystem
maintenance and where it will be increasingly difficult
to prevent human impacts (direct or indirect) on PAs,
it is imperative to develop adaptive fire management
strategies in PAs. Ultimately,meeting the conservation
goals in fire-prone ecosystems will require ongoing
monitoring and adaptive management of fire regime
attributes in response to climate change, integrated
with the cumulative effects of land-use change and
increasing human pressures.
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