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Abstract

Productivity is strongly associated with terrestrial species richness patterns,
although the mechanisms underpinning such patterns have long been debated.
Despite considerable consumption of primary productivity by fire, its influence on
global diversity has received relatively little study. Here we examine the sensitivity
of terrestrial vertebrate biodiversity (amphibians, birds and mammals) to fire,
while accounting for other drivers. We analyse global data on terrestrial vertebrate
richness, net primary productivity, fire occurrence (fraction of productivity
consumed) and additional influences unrelated to productivity (i.e., historical
phylogenetic and area effects) on species richness. For birds, fire is associated with
higher diversity, rivalling the effects of productivity on richness, and for mammals,
fire's positive association with diversity is even stronger than productivity; for
amphibians, in contrast, there are few clear associations. Our findings suggest an
underappreciated role for fire in the generation of animal species richness and the
conservation of global biodiversity.
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Stein et al.,, 2014; Whittaker et al., 2001; Wiens &
Donoghue, 2004; Willig et al., 2003). Although the rela-

Some of the most challenging questions in ecology
and conservation concern biodiversity and its distri-
bution across the planet (Brooks et al., 2006; Hoekstra
et al.,, 2005; McGill et al., 2015; Myers et al., 2000).
Latitudinal trends in species richness on land—generally
high in equatorial biomes and decreasing poleward—
have generated many hypotheses about the forces shap-
ing these patterns. Proposed causal mechanisms include
the size and historical stability of habitats, environmental
heterogeneity, and the available energy to be partitioned
among species (Gaston, 2000; Schluter & Pennell, 2017;

tive importance of different mechanisms has long been
debated, a common theme among terrestrial studies is
that productivity is a dominant driver of speciation and
macro-scale richness patterns (Cusens et al., 2012; Field
et al., 2009; Gillman et al., 2015; Simova & Storch, 2017)
(Figure 1a). In most of these terrestrial ecosystems, how-
ever, fire has been a fundamental natural disturbance
for at least the last 300 million years (Scott, 2000). By
consuming primary productivity, fire has strong interac-
tions with the vegetation of different ecosystems (Bond
et al., 2005; Krawchuk & Moritz, 2011; McLauchlan
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FIGURE 1 Macro-scale relationships of species richness to
productivity and fire. Considering productivity as an influence on
latitudinal species richness patterns (a), observed and hypothesised
relationships are primarily positive, although the shape is debated
(Gillman et al., 2015; Whittaker et al., 2001). Fire is also generally
found to be positively related to species richness as an ecological
driver (b), acting as an agent of ‘pyrodiversity’ that generates
environmental heterogeneity (He et al., 2019). In an evolutionary
context (c), fire could have multiple positive effects on species
richness (He et al., 2019); however, via combustion fire also

removes resources (Chen et al., 2010; Polis & Strong, 1996) that
could otherwise fuel the maintenance and diversification of species
richness. The ‘null’ response of no effect, already largely rejected for
productivity (a), is also included as a horizontal line for each panel.
Note that shapes here refer to untransformed data (i.e., original scale
prior to log transformation). (Also see additional references in the
text.)

et al., 2020), and the resulting 2-3 PG C emissions per
year play a substantial role in the global carbon budget
(Bowman et al., 2009; van der Werf et al., 2017). Given
the important effects of fire on ecosystem characteris-
tics and the lives of both plants and animals (Bond &
Keeley, 2005; Carbone et al., 2019; He et al., 2019; Keeley
et al., 2011; McLauchlan et al., 2020; Nimmo et al., 2019;
Pausas & Parr, 2018), surprisingly little is known about
how fire and productivity interact in affecting global
species richness patterns.

Fire-prone ecosystems are often considered hotspots
of biodiversity; much of that pattern is attributed to the
effects of fire (Keeley et al., 2011; Kelly & Brotons, 2017;
Pausas & Ribeiro, 2017). Over ecological timescales
(Figure 1b), fire creates environmental heterogene-
ity and thus habitat diversity for different species (He
et al., 2019; McLauchlan et al., 2020). Over evolutionary
timescales (Figure 1c), mutagenic effects of heating or
shorter generation times due to fire could both promote
diversification (He et al., 2019). Longer exposure to more
stable, fire-prone environments could also promote di-
versification, suggesting that fire regime predictability
could be important (Mucina & Wardell-Johnson, 2011).
Fire's consumption of standing biomass also opens up
otherwise unavailable ecological niches, increasing near-
term richness and simultaneously supporting higher di-
versification rates and total long-term richness under
active fire regimes (Schluter & Pennell, 2017). In con-
trast, through combustion of primary productivity and
long-distance transport of emissions (Chen et al., 2010),
fire ‘shunts’ (sensu (Polis & Strong, 1996)) local energy
and resources that could otherwise drive diversification
and permit the maintenance of diversity. One might
therefore suppose that fire's consumption of primary
productivity would lead to slower speciation and lower
species richness over evolutionary timescales, although
such negative effects will depend on how metabolic rates
of organisms scale up to influence patterns of diversity
(Allen et al., 2002; Ernest et al., 2003). Clearly, a vari-
ety of complex effects mediate the net influence of pro-
ductivity and an ecological disturbance like fire at the
global scale (He et al., 2019; Huston, 2014; Krawchuk &
Moritz, 2014; McLauchlan et al., 2020).

Here we ask the following basic question: What is
the relationship between fire and global species rich-
ness patterns of amphibians, birds and mammals, after
incorporating several other key environmental drivers.
We focus on terrestrial vertebrates (although excluding
reptiles; Jenkins et al., 2013) because there is a relative
lack of information on global fire—diversity relation-
ships in these taxa (He et al., 2019; Pausas & Parr, 2018).
Our emphasis on fire and terrestrial vertebrate richness
also complements many existing broad-scale studies and
reviews that focus on fire, diversification and richness in
plants (Bond & Scott, 2010; Cramer & Verboom, 2017,
He et al., 2019; Keeley et al., 2011; Lamont & He, 2017;
Pausas, 2015; Pausas & Ribeiro, 2017). To quantify the
relative roles of fire and productivity on species richness,
both average conditions and their variability through
time are included in mixed effects models. We directly
incorporate additional potential drivers that are deemed
important to richness patterns, including area effects
(via the size of each ecoregion) and historical phylo-
genetic effects (via biogeographic realms) (Chown &
Gaston, 2000). We are thus able to test whether the net
influence of productivity consumption by fire and its
variability through time appear to increase or decrease
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richness overall, and we can isolate the functional form
of global species richness responses to gradients in both
productivity and fire (Figure I).

MATERIALS AND METHODS
Data

We used annual net primary productivity (NPP) in our
analyses, a reasonable approximation of available energy
for trophic levels above plants (Simova & Storch, 2017
Whittaker et al.,, 2001). Global productivity and fire
observations data spanning roughly two decades (pe-
riod 1997-2015) come from the Global Fire Emission
Database at globalfiredata.org (Version 4.1, GFED4s),
based on both the standard GFED4 burned area (Giglio
et al., 2013) and on burned area derived from active fire
information seen outside the burned area maps. The
GFED4s provides cell area in m>, monthly burned area,
as a fraction of grid cell area, NPP in g C ‘m~? month™!,
and fire carbon emissions (FEM) in g C ‘m > month™' ata
0.25° resolution. Given that FEM represents the amount

Bird richness
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N

£
§

of plant biomass consumed by fire, we computed yearly
NPP and FEM values for each grid cell and the fraction of
NPP consumed by fire as FEM/NPP. For each cell, yearly
data were averaged over the 1997-2015 period. The inter-
annual coefficient of variation (CV) over the period was
also calculated, as a measure of the variability in primary
production and its consumption by fire. Average patterns
of NPP and the fraction consumed by fire, as well as their
variability through time over the period of analysis, are
shown in Figure 2 (see also Figure SI).

Biodiversity data for amphibians, birds and mam-
mals (Figure 2) at a 10-km resolution come from biodi
versitymapping.org, version 2017 (Jenkins et al., 2013).
These data use polygonal ranges of species distribution
to assess the number of species present in a given grid
cell; each species is considered present in a cell if the cell
overlaps part of its polygonal range. Biodiversity data
were aggregated at the extent and 0.25° resolution of the
fire data set through bilinear interpolation.

Terrestrial ecoregions of the world (Olson et al., 2001)
were obtained from WWF (www.worldwildlife.org).
Ecoregions are defined as relatively large units of land
or water containing a distinct assemblage of natural

NPP

I_cv h_Cv

Fire consumption

|_Fcons
I_cv h_Ccv

FIGURE 2 Spatial variation in terrestrial vertebrate richness patterns, productivity and fire's consumption of productivity. Species
richness of different terrestrial vertebrate taxa (left panels) are examined with respect to average annual net primary productivity (NPP) and
the fraction of NPP consumed by fire, as well as their variability through time represented by the coefficient of variation (CV) (right panels).
(Please see Materials and Methods for data sources, other variables examined and modelling details.)
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communities sharing a large majority of species, dy-
namics and environmental conditions. The original data
set contains 867 terrestrial ecoregions, classified into
14 different biomes, excluding rock, ice and water, and
six different biogeographic realms (Figure S2) (Olson
et al., 2001). In all data sets, following Kreft et al. (2008),
we retained data for those pixels within land masses
equal to or larger than Australia (i.e., islands are ex-
cluded). Of the 867 ecoregions available, 620 were re-
tained for birds and mammals, while 617 were retained
for amphibians; some exclusions were due to missing
data. For both fire and biodiversity data we computed
ecoregion-level means. While running the analysis at the
scale of 0.25° grid cells might have provided more infor-
mation, it would have been much more computationally
intensive (more than a 100-fold increase in observational
units). Given that ecoregions are explicitly constructed
to aggregate pixels that are ecologically similar, a finer-
grained analysis also might not sharpen our inferences
at the global scale very much. For biomes that cover less
than 1% of the Earth's terrestrial surface (identified in
Figure 3), we are less confident in results due to possible
spatial resolution mismatches between data sources; a
more detailed summary of biome-level characteristics is
provided in Table S1.

Modelling

In our analysis, we log-transformed all response and pre-
dictor variables (we use natural logarithms throughout),

except the interannual coefficients of variation. The data
were hierarchically grouped at three levels: biome (e.g.,
tropical forest), realm (e.g., Neotropics) and their inter-
action (e.g., Neotropical forests).

We used mixed effects models (Bates et al., 2015) to
quantify the net influence of all predictors. As fixed-
effect (overall, global-scale) predictors, we incorporated
ecoregion area (km?) after excluding islands; mean NPP
(g Cm™> month™); average fraction of NPP consumed
by fire annually (proportion 0-1); and the interannual
CV (unitless) of NPP and fire consumption, as well as
the pairwise interactions of all of these predictors ex-
cept for area. Since all of these factors vary within all
three of our grouping factors (biome, realm and biome
x realm), the maximal random effects components of
the model would include among-biome, among-realm
and among-(biome x realm) variation in all of these
effects, as well as the within-group correlations among
them (Barr et al., 2013). For example, we would like to
know if diversity was more sensitive than average to
NPP, or to fire, in some biomes, and whether those bi-
omes where richness had above-average sensitivity to
NPP typically also had above-average sensitivity to fire
(positive correlation), or below-average sensitivity (neg-
ative correlation). In order to simplify the model so that
all the variances can be estimated (Bolker, 2015), we
considered different versions of the random effects at
each level: (1) the full variance—covariance matrix with
all correlations estimated, (2) a diagonal covariance ma-
trix that assumes independent variation of each effect
across groups or (3) an intercept-only model assuming
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FIGURE 3 Biome-level summary of productivity, fire consumption and species richness for terrestrial vertebrate taxa. Average annual
productivity rates are aggregated by biome and displayed here, along with annual average rates of NPP consumed by fire, and terrestrial
vertebrate species richness in each biome. Biomes are shown in a roughly polar-to-equatorial ordering, based on mean ecoregion latitude.
Abbreviations: Tund, tundra; BorF, boreal forests/taiga; TeG, temperate grasslands, savannas & shrublands; TeCF, temperate conifer forests;
TeBF, temperate broadleaf & mixed forests; MedF, mediterranean forests, woodlands & scrub; Des, deserts & xeric shrublands; MoG, montane
grasslands & shrublands; FIG*, flooded grasslands & savannas; TrCF*, tropical & subtropical coniferous forests; TrDF, tropical & subtropical
dry broadleaf forests; Mang*, mangroves; TrG, tropical & subtropical grasslands, savannas & shrublands; TrMF, tropical & subtropical moist
broadleaf forests (*These biomes cover less than 1% of the Earth’s terrestrial area).
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that only the overall richness varied across groups.
We evaluated combinations of these three possible
random-effects structures (full, independent, intercept-
only) for each of three grouping levels (biome, realm
and biome x realm) for a total of 27 model structures
for each taxon. To account for residual spatial autocor-
relation, the model also included a penalised spherical
spline component (using the gamm4 package (Wood &
Scheipl, 2014)). We discarded singular model fits (i.e.,
models where one or more component variances was
estimated as zero) and selected the non-singular model
with the best (lowest) AIC (Matuschek et al. (2017) have
suggested a similar procedure, but based on stepwise
regression using p-values).

For birds and amphibians, the selected model included
independent effects of the predictors at the biome/realm
interaction level and intercept-only (mean diversity)
variation at the biome and realm levels; for mammals,
the (independent) predictor effects were included at the
realm level, with mean-diversity effects at the biome and
biome/realm levels.

All parameters were centred and scaled for model
fitting (Schielzeth, 2010); we convert the parameters
back to their original scales when reporting or plot-
ting them. Small-magnitude coefficients on the log
scale are approximately equivalent to proportional
changes (i.e., a coefficient of 0.05 corresponds to a
proportional change of exp(0.05) = 1.051 = 5% differ-
ence). Since both the predictor variables (e.g., NPP)
and the response variable (species richness) are on the
log scale, we can interpret the coefficients as elastic-
ities: a coefficient of 0.05 would mean, for example,
that a change of 1% in NPP would result in a change
of 0.05 x 1% = 0.05% in species richness. Alternatively,
one can interpret log—log regression coefficients as
power law exponents: if log y = a+b log x, then y is
proportional to x?. A similar argument applies for the
variability effects (NPP CV, Fire consumption CV):
these represent variability scaled to the mean, so a co-
efficient of 0.05 would mean that a change of 1 unit of
variability as a proportion of the mean would lead to a
change of 0.05 in the log of species richness, or a =5%
difference.

We used R’ values to assess the overall goodness of
fit of selected models and semi-partial R? values (which
represent the ‘strength of association between a subset of
predictors and the outcome, adjusted for other predic-
tors in the full model’) (Jaeger et al., 2017) to quantify the
overall contributions of each term in the model. We used
the standardised generalised variance approach (Jaeger
et al., 2019) as implemented in the r2glmm package
(Jaeger, 2017), with extensions to the package to adapt it
for use with gamm4 models. In interpreting model fits,
we typically replace ‘significance’ statements with those
reflecting ‘statistical clarity’, which make the meaning of
statistical tests easier to interpret and explain (Dushoff
et al., 2019).

RESULTS

Species richness patterns in terrestrial
vertebrates and NPP consumption by fire

Ranked by average annual productivity, the biomes of
the world show a consistent pattern of increasing spe-
cies richness with increasing NPP (Figure 3). The per-
centage of NPP consumed by fire, however, does not
show the same trend. Instead, most biomes experience
1%-2% NPP losses each year, with some showing much
higher annual rates (i.e., Boreal Forests at 4%; Tropical
and Subtropical Grasslands, Savannas and Shrublands
at 7%).

Model fits and variable importance

Based on a variety of mixed effects model specifications
and sensitivity analyses, the environmental drivers we
examined are able to explain the majority of the vari-
ation in global terrestrial vertebrate richness patterns
(Figure 4a; Table S2). The strongest model is for bird
richness (R* = 0.71), although models for both mammals
and amphibians also performed well (R* = 0.55 and 0.58
respectively).

Across taxa, the most important variable related to
richness patterns is NPP, whose partial R? values range
from 0.13 to 0.25 (Figure 4a; Table S2) and also have sta-
tistically clear effects on richness for all taxa (Figure 4b).
Fire's consumption of NPP has clear effects on rich-
ness for birds and mammals, although explaining only
a moderate fraction of modelled variation in richness
(partial R* = 0.043 and 0.093 respectively). Of the re-
maining NPP- and fire-related variables examined, the
interaction between NPP and fire's consumption of NPP
in bird richness models is the only one that is statistically
clear (partial R* = 0.015). Area is moderately important
in explaining variation in bird richness models (partial
R? = 0.055) and less so in amphibian richness models
(partial R? = 0.0072), the taxa for which this variable
shows clear effects. The remaining variance explained is
due to other variables in the model (e.g., random effects
of biome and realm).

Productivity- and area-related influences on
terrestrial vertebrate richness

As expected, increased NPP is consistently associ-
ated with increased richness at the macro-scale for all
taxa examined. This relationship is evident in the plots
of partial residuals (Figure 5; Table S3), which remove
other effects and show only a single variable's relation-
ship with richness. Amphibians (Figure 5g), whose rich-
ness is generally an order of magnitude lower than birds
or mammals, are much more sensitive to differences in
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average annual productivity (i.e., 3.8% increase in spe-
cies richness for each 10% increase in NPP). Similar rela-
tionships were found for both bird and mammal richness
(Figure 5a,d), but exhibiting roughly half the sensitivity
of amphibians (i.e., 1.9% and 1.5% increases, respec-
tively, for each 10% increase in NPP; Table S3). We did
not find consistently clear effects of the temporal vari-
ability of NPP (i.e., its inter-annual coefficient of varia-
tion) on richness; however, our models suggest that bird
species richness may be higher in ecoregions with more
variable NPP from year to year (Figure 5b).

Although empirical studies and theoretical model-
ling suggest that richness might generally be expected to
increase with ecoregion size, we found that the effects
of ecoregion area vary across taxa after controlling for
other variables. Amphibians show a small but clear posi-
tive trend (Figure 5i), reflecting an additional 0.54% rich-
ness for each 10% increase in ecoregion size. However,
birds show a clear negative trend (Figure 5c), with 0.72%

fewer species for the same 10% area increase. Mammal
richness patterns also suggest a possible negative rela-
tionship (Figure 5f), although the area variable is statis-
tically unclear.

Fire-related influences on terrestrial
vertebrate richness

After accounting for the influence of other variables,
increases in fire's consumption of productivity are con-
sistently associated with increased terrestrial vertebrate
richness, with relatively strong and statistically clear ef-
fects for birds and mammals (Figure 6a,c; Table S3). In
fact, mammal richness is very sensitive to the fraction of
NPP consumed by fire (i.e., 2.5% increase in richness for
each 10% increase in fire), almost twice the influence of
NPP itself. Fire has a weaker effect on bird richness (i.c.,
1.4% increase in richness for each 10% increase in fire),
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but it is still strong and approaches that of NPP. The sta-
tistically clear fire-related interaction between NPP and
fire's consumption of NPP for birds is negative; in other
words, increased fire consumption weakens productiv-
ity's positive effect on bird richness (Figure S5). Fire had
smaller (and unclear) effects for amphibians (Figure 6¢).

As with the variability of NPP, the variability of
fire does not have statistically clear effects on species
richness in our models. However, richness appears to
increase in mammals as temporal variability of fire

increases (Figure 6d). In amphibians, there is a tendency
towards higher richness in areas with less variable fire
activity through time (Figure 6f).

DISCUSSION

We identify a surprisingly strong influence of fire on
global patterns of terrestrial vertebrate richness, and
our models perform as well or better than most models
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created to explain global biodiversity patterns (Field
et al., 2009). Consistent with many studies, we observe
the important positive effect of productivity, represented
here by NPP, which captures climatic influences in an
internally consistent way (i.e., subsuming the effects of
temperature-, moisture- and energy-related drivers).
After controlling for productivity- and fire-related influ-
ences, area shows conflicting or unclear relationships to
richness in different taxa (Table S3). This finding is con-
sistent with some studies, such as recent work on mam-
mal richness (Udy et al., 2021), but area effects may be
hard to observe at the scale of the ecoregions used in our
analysis. Alternatively, the influence of area may have
been captured by the random-effects components of
realm and/or biome, which could also incorporate other
historical effects.

Fire appears to have both positive and negative ef-
fects on terrestrial vertebrate richness patterns. Despite
a generally positive influence, our analysis shows a po-
tentially detrimental impact of fire on bird richness: the
clear negative interaction between productivity and the
fraction consumed by fire illustrates that, for a given
productivity level, increased burning weakens the pos-
itive effect of productivity on richness. Nevertheless,
the net global effect of increasing fire is to increase bird
richness, which is in agreement with some regional bird
studies (e.g., Beale et al., 2018; Tingley et al., 2016) but
not all (e.g., Taylor et al., 2012). The temporal variability
of fire may also have a potentially detrimental impact
on amphibian richness, although this variable (and av-
erage fire consumption itself) does not have clear effects
in our models for amphibians. Such a result (i.e., the null
hypothesis in Figure 1b,c) may not be surprising, how-
ever, given that fire probably plays a less consistent role
in the relatively moist habitats that amphibians typically
require. In contrast, mammal models suggest that more
temporally variable fire regimes may increase richness,
and fire's consumption of NPP has very strong positive
effects on richness. This finding is consistent with im-
portant relationships between fire and mammal richness
observed in African (Beale et al., 2018) and Australian
(Lindenmayer et al., 2016) studies.

Whether the strong influence of fire on mammal and
bird richness is primarily ecological or evolutionary in
nature (i.e., rejecting the null hypothesis in Figure 1b,c
respectively), our results only hint at their relative impor-
tance as mechanisms. As stated earlier, fire's consump-
tion of NPP could alter rates of evolutionary processes
of diversification and extinction, and this could extend
to fire-related adaptations. Given the scarcity of clearly
fire-adapted traits in animals (Pausas & Parr, 2018), how-
ever, the relatively strong positive influence of fire on bird
and mammal richness would presumably be due to other
mechanisms if evolutionary. Plants should experience
the most direct evolutionary effects of fire, and there is
strong evidence that fire activity has promoted diversi-
fication by shortening generation times (He et al., 2019).

Similar evidence for animals may exist but has yet to be
found. The same is true for fire as a mutagenic agent that
would promote diversification. As an ecological mecha-
nism, the environmental heterogeneity created by fire in
space and time is widely thought to allow for coexistence
of a variety of species at different seral stages and with
different habitat needs. Despite widespread confidence
in fire as an agent of pyrodiversity—that is, creation of
environmental heterogeneity through variation in fire
regimes—studies are not consistent in observing a posi-
tive effect (Jones & Tingley, 2022). A challenge here is in
how one defines the diverse effects of fire and the spatio-
temporal scale of analysis. Regardless, even if such terms
were to be met, pyrodiversity could be both an ecologi-
cal and evolutionary influence: Fire generates novel but
transitory habitats by consuming plant biomass, yet this
also facilitates higher speciation and long-term richness
where fire is an ongoing force (Schluter & Pennell, 2017).
For animals, adaptations could include traits that allow
survival during fires (e.g., rapidly detecting and escaping
impacts) and advantages in post-fire environments (e.g.,
locating and exploiting resources) (Pausas & Parr, 2018).
How ecological and evolutionary drivers translate to ef-
fects on animal richness remains to be seen, but our find-
ings show the cumulative effects to be strikingly positive,
at least for bird and mammal richness.

Despite open questions about mechanisms, our re-
sults provide a new and exciting dimension in our un-
derstanding of global biodiversity patterns. Global fire
regimes have admittedly shifted through time (i.e., track-
ing climatic shifts and human activity), yet the modern
fire data used in our analyses appears to be reflective of
past global fire activity that would have helped gener-
ate species richness patterns over prehistoric timescales
(see paleo-fire comparison with Marlon et al., 2016 in
ST). It should be noted, however, that our findings of fire
as an apparent causal driver of species richness should
not be taken to mean that ‘fire is good’ in any of these
ecosystems. Species may be fire-sensitive if fire has pre-
historically been relatively rare (e.g., hot and cold des-
erts, wet tropical forests, and mangroves) (He et al., 2019;
McLauchlan et al., 2020). In these ecosystems fire is
more of a modern threat than an important process to
maintain, and recent fire activity in these systems is not
a likely driver of richness. Even in ecosystems where fire
has been a cyclical force over long periods, intentional
deforestation fires and unusually severe events due to re-
cent climate change may be quite different from natural
fire regimes. Concern in these ecosystems is about main-
taining desired frequencies, sizes, intensities and timing
of fire events (Kelly & Brotons, 2017; Moritz et al., 2013).
Higher resolution analyses of fire and productivity ef-
fects should eventually reveal how such relationships
vary at the scale of individual biomes or ecoregions, in
addition to where and how fire acts as a causal driver of
biodiversity. Although species richness could certainly
be affected by omitted variables that simply correlate
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with fire- or NPP-related patterns, it is not obvious what
those variables would be. Productivity is widely seen as a
dominant driver of broad-scale biodiversity, and we have
accepted this causality as a given. Our goal has been to
add insight by quantifying the under-appreciated ef-
fects that fire may have on terrestrial vertebrate richness
patterns.

There has been substantial debate over the functional
form of the relationships underpinning species rich-
ness patterns at different scales (Figure la) (Gillman
et al., 2015; Whittaker et al., 2001), including those spe-
cifically for animals (Cusens et al., 2012). An advantage
of our approach is the ability to remove the effects of
other variables, in order to isolate a particular driver of
interest. This feature is important because simple data
plots may suggest a functional relationship that changes
substantially after accounting for other influences.
Although integrating additional predictor variables
could alter future interpretations, our results (Figure 5)
approximate a positive power-law relationship (i.e., lin-
ear scaling after log-log transformation); richness thus
increases monotonically with higher productivity, but at
a declining rate (i.e., the non-linear form in Figure 1a).
This finding is consistent across taxa and appears to
hold at the level of individual biomes (Figure S6). While
positive relationships between productivity and richness
agree with many biodiversity studies at broad scales
(Cusens et al., 2012; Gillman et al., 2015; Whittaker
et al., 2001), there are few accepted explanations for a
power law form. However, an equation of state proposed
recently as part of the Maximum Entropy Theory of
Ecology (Harte et al., 2022), accurately predicts scaling
relationships among productivity, biomass, species rich-
ness and abundance. Interestingly, a power law scaling
also appears to hold for the positive relationship between
terrestrial vertebrate richness and the fraction of produc-
tivity consumed by fire (Figure 6; Figure S7). Although
this similarity does not necessarily indicate the same
causal mechanism, it does suggest a role for fire as a fa-
cilitator of energy flows and cycling of resources, simi-
lar to temperature in the Metabolic Theory of Ecology
(Allen et al., 2002; Ernest et al., 2003). Fire could thus be
accelerating generation times and ecological filtering—
and also resource cycling and availability, as captured by
FCC—ultimately supporting greater potential for diver-
sification and local species richness.

Anthropogenic climate change is a clear threat to
Earth's biodiversity, and altered fire regimes are one of
the ways that this threat will manifest itself (Bowman
et al., 2009; Kelly et al., 2020; Moritz et al., 2012).
Although this danger is real, our findings shed new light
on the importance of maintaining fire's key role in ter-
restrial ecosystems, particularly for birds and mammals.
Together, the interplay of plant productivity and the fire
that consumes it are major drivers of global animal rich-
ness patterns, compelling us to more directly address
the role of fire in frameworks explaining and protecting

biodiversity. Given the surprisingly strong macro-scale
relationships between fire and species richness, conser-
vation of natural fire regimes may be as necessary as pre-
serving habitat itself.
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