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Abstract. Macroecological studies have established widespread patterns of species diversity and abun-
dance in ecosystems but have generally restricted their scope to relatively steady-state systems. As a result,
how macroecological metrics are expected to scale in ecosystems that experience natural disturbance
regimes is unknown. We examine macroecological patterns in a fire-dependent forest of Bishop pine (Pinus
muricata). We target two different-aged stands in a stand-replacing fire regime: a mature stand with a
diverse understory and with no history of major disturbance for at least 40 yr, and one disturbed by a
stand-replacing fire 17 yr prior to measurement. We compare properties of these stands with macroecolog-
ical predictions from the Maximum Entropy Theory of Ecology (METE), an information entropy-based the-
ory that has proven highly successful in predicting macroecological metrics in multiple ecosystems and
taxa. Ecological patterns in the mature stand more closely match METE predictions than do data from the
more recently disturbed, mid-seral stage stand. This suggests METE’s predictions are more robust in late-
successional, slowly changing, or steady-state systems than those in rapid flux with respect to species com-
position, abundances, and organisms’ sizes. Our findings highlight the need for a macroecological theory
that incorporates natural disturbance, perturbations, and ecological dynamics into its predictive capabili-
ties, because most natural systems are not in a steady state.
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INTRODUCTION

Disturbance is pervasive in ecosystems, and it
influences patterns of species diversity, abun-
dance, and community membership over space
and through time (Turner 1989, Wu and Loucks
1995). However, macroecology, the discipline
concerned with large-scale patterns of diversity,
has generally avoided studies of disturbed sys-
tems for two reasons: First, disturbed systems
are perceived as being in transition and unlikely
to produce replicable, generalizable results, and
second, assumptions of steady-state, equilibrium
and stabilizing mechanisms in macroecological
theory are common and often required in order
to solve equations (Hubbell 2001). Macroecology
has instead focused primarily on ecosystems that
are perceived to be relatively stable (Fisher et al.
2010), in that they exhibit low variance in com-
munity structure through time (Turner et al.
1993). Disturbed ecosystems—and patches
within ecosystems—are often in flux with respect
to species composition and richness, species–area
relationships (SARs), distribution of abun-
dances across species, and body sizes, and
intraspecific spatial distributions of individuals.
This is true of ecosystems that have recently
undergone, or are continuing to undergo, natural
disturbances (those that are part of a repeating
disturbance regime, sensu Turner 2010), anthro-
pogenic changes, and other ecological disrup-
tions. Although ecosystems in steady-state, even
at the local scale, are relatively rare (Sousa 1984,
Wu and Loucks 1995), standard macroecological
study systems are often chosen specifically
because they are in or near steady states (e.g.,
most of the Center for Tropical Forest Science
plots represent late-successional, primary forest;
Condit 1998, : Chapter 1) and therefore do not
consider the dynamics of disturbed sites or entire
disturbance regimes. Natural disturbances have
both large- and small-scale structuring effects in
all ecosystems (Turner 1989, Hamer and Hill
2000), but we are not aware of any macroecologi-
cal study that has addressed how metrics of bio-
diversity and abundance scale in disturbance-
dependent ecosystems.

Macroecologists have invoked disturbance
broadly (including human activities, environ-
mental variability, invasive species, and so on) as
a factor responsible for deviations from

theoretical predictions or expected patterns (Dor-
nelas 2010), but it remains unclear whether
macroecological patterns reported across ecosys-
tems are properties of all ecological systems, or
only of undisturbed, steady-state communities.
Because non-steady-state systems are so perva-
sive and widespread (Sousa 1984, Wu and
Loucks 1995), the failure to incorporate distur-
bance into macroecology poses a major challenge
to the utility of this field in understanding eco-
logical dynamics as well as global change. Syn-
thesizing a “macroecology of disturbance” that
incorporates quantitative macroecological met-
rics could have considerable benefits for conser-
vation efforts, given that many ecosystems with
active disturbance regimes (and the species that
have evolved in them) rank among the most
globally endangered (Noss et al. 1995, Turner
2010, Schlossberg and King 2015). Distinguishing
the effects of natural disturbances from those of
anthropogenic changes is also important for pre-
dicting future states of ecosystems.
Here, we will restrict the use of the term dis-

turbance to refer to natural disturbances, which
satisfy the following four characteristics: (1) They
cause mortality of individual organisms in a
community; (2) however, they do not cause mor-
tality of all individuals in the community or
metacommunity and therefore do not result
exclusively in primary succession; (3) they are
part of a historical and repeating disturbance
regime (Turner 2010) with well-defined charac-
teristics (Pickett and White 1985, Turner et al.
1998, Turner 2010); and (4) the disturbance is
absolute rather than relative (Pickett and White
1985) in that each disturbance event is “a rela-
tively discrete event in time that disrupts the
ecosystem, community or population structure
and changes the resources, substrate availability
or physical environment” (Pickett and White
1985, White and Jentsch 2001). This strict opera-
tional definition of disturbance as synonymous
with natural disturbance is consistent with its
usage in several influential reviews of distur-
bance ecology (Pickett and White 1985, White
and Jentsch 2001, Turner 2010). We differentiate
(natural) disturbances from ecological perturba-
tions and disruptions, which will refer to other
processes that restructure an ecological commu-
nity, including events that are natural in origin
but are not part of historical, repeating
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disturbance regimes (e.g., landslides, extremely
rare weather events), and those that are novel
and may be anthropogenic in origin (e.g., human
impacts). A lava flow or landslide that kills or
physically removes all plant individuals in the
community and results in primary succession
would therefore not be a disturbance, but rather
a perturbation, disruption, or catastrophe under
our definition (criterion 2). We note that proper-
ties (1) and (2) are scale-dependent.

Past macroecological work that incorporates
ecological disturbances of any type focused
predominantly on their effects on the shape of
the species abundance distribution (SAD; see
Appendix S1 for acronyms used in this paper).
Although the SAD is well studied (reviewed in
McGill et al. 2007, White et al. 2012, Baldridge
et al. 2016), the underlying shape of a natural or
generic SAD is debated (see for example Hill
et al. 1995, Hill and Hamer 1998, Nummelin
1998, Ulrich et al. 2010), and various distribu-
tions have been proposed, with mixed empirical
support for each. For the rank-abundance form
of the SAD, a lognormal distribution is reported
from many steady-state systems (Whittaker 1965,
May 1975, Gray 1981, Ulrich et al. 2010), whereas
other studies (Kempton and Taylor 1974, Dennis
and Patil 1979), including big data approaches,
suggest that the log-series distribution may be
the most common across systems and taxa
(White et al. 2012, Baldridge et al. 2016), and one
study suggests the prevalence of the double geo-
metric distribution (Alroy 2015). One-time eco-
logical perturbations are often invoked as
responsible for a lognormal SAD (Kempton and
Taylor 1974, Bazzaz 1975, Death 1996, Hill and
Hamer 1998, Newman et al. 2014). Work focus-
ing on succession suggests a transition in the
shape of the SAD from geometric in early succes-
sional stages to lognormal and subsequently log
series in later stages (Bazzaz 1975, Whittaker
1975). Kempton and Taylor (1974) show in a
comparative study that moth communities in
undisturbed plots sites in the Rothamsted Insect
Survey in England are best modeled by log-series
SADs, and plots recovering from agricultural
activity have lognormal SADs. Certain ecological
factors, sampling methods (Ulrich et al. 2010),
detection issues (Tokeshi 1993), and mathemati-
cal processes (based on the central limit theorem)
may also produce the lognormal (Tokeshi 1993).

Other macroecological metrics are less well stud-
ied in the context of ecological disturbance or
disruption, although the SAR has been examined
experimentally with removal of seed predators
(Supp et al. 2012), and the effects of ecological
perturbations are beginning to be investigated in
an increasingly macroecological framework
(Supp and Ernest 2014, Mayor et al. 2015).
The Maximum Information Entropy Theory of

Ecology (METE) is a macroecological theory (de-
scribed in Harte et al. 2008, 2009, Harte 2011,
Harte and Newman 2014, Brummer and New-
man 2019) that provides a statistical framework
for linking related metrics (McGill 2010) that are
often otherwise considered in isolation: the SAR,
the SAD, the species-level spatial abundance dis-
tributions (SSADs; a metric quantifying the spa-
tial distribution or clumping of individuals in a
species over a given area), and the z-D universal
scale collapse relationship, which relates the local
slope of the SAR to the ratio of abundance to spe-
cies richness at that scale (Wilber et al. 2015).
Maximum Entropy Theory of Ecology relies on
maximum information entropy inference (Max-
Ent) to predict least-biased probability distribu-
tions, given empirical constraints (Jaynes 1982),
but invokes no explicit physical or ecological
mechanisms (Harte 2011, Harte and Newman
2014). An application of the MaxEnt procedure,
the ASNE version of METE (Harte and Newman
2014), uses only the relationships between four
non-adjustable state variables that take on values
from the system being measured: A0 (total area
under consideration), S0 (total species), N0 (total
abundance), and E0 (total metabolic energy). The
state variables are static, not dynamic in this for-
mulation, and there are no adjustable parameters
characterizing the scaling of species diversity,
abundances, and energetics in a system. Mathe-
matical forms of empirical constraints arise from
ratios of the state variables.
Empirical tests of METE strongly support its

core predictions, including the SAR and SAD
(Harte et al. 2008, 2009, White et al. 2012,
McGlinn et al. 2013), SSADs (Harte 2011), and
certain metabolic predictions (Newman et al.
2014, Xiao et al. 2015), but some spatial distribu-
tion and metabolic predictions are not supported
(see McGlinn et al. 2015, Newman et al. 2014,
Xiao et al. 2015). METE has accurately predicted
the SAR, SAD, and SSAD for a range of natural
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communities spanning different taxa and
biomes, including herbaceous plants, trees, verte-
brates, and invertebrates, and in temperate, trop-
ical, and montane environments, as well as
isolated island communities (Harte et al. 2008,
2009, Harte 2011, Rominger et al. 2016). Maxi-
mum Entropy Theory of Ecology also applies in
communities where not all of the biodiversity
has been sampled and only a focal community is
modeled (Harte et al. 2013; Appendix S2). This
study represents the first assessment of these
common macroecological metrics for a plant
community in a high-severity natural distur-
bance regime.

Applying METE to ecosystems in transition
In this study, we apply METE to an episodi-

cally disturbed ecosystem to test how well vari-
ous macroecological metrics describe community
structure at the stand level (specifically the SAR
and the related z-D curve, SAD, and SSADs),
whether or not there are departures from theoret-
ical predictions, and whether those departures
are systematic with disturbance. We compare a
forest stand that has undergone a major distur-
bance (stand-replacing wildfire 17 yr previously)
in Bishop pine forests and for a nearby, mature
stand in the same disturbance regime (Brown
et al. 1999) at Point Reyes National Seashore
(PRNS) in California, USA. We hypothesize that
the METE will predict these community struc-
ture metrics more accurately in the more mature
plot (Mount Vision) because it has had a longer
time since disturbance to reach steady-state
dynamics, and METE’s predictions will be less
accurate for the more recently disturbed, mid-
seral stage plot (Bayview). While the mid-seral
stage plot is past the early successional stage of
high and rapidly changing diversity (Ornduff
and Norris 1997, Ornduff 1998), it remains an
unusual example of forest structure and dynam-
ics because of its dense, uniform size structure
and arrangement of trees, which undergo den-
sity-dependent mortality (Harvey and Holzman
2014). These factors affect macroecological state
variables and their ratios in a predictable man-
ner. If departures of data from theory appear to
be coherent in the mid-seral stage plot, it may be
possible to identify the influence of disturbance
on macroecological patterns, and we may extend

these analyses to a broad range of ecosystem
types in future work.
As applied here, METE might accurately cap-

ture snapshots of rapidly changing ecosystems at
an instant in time, and the predictions of the
ASNE version of METE are static and instanta-
neous. Here, we used separate plots with differ-
ing disturbance histories to capture the
macroecological patterns that characterize live,
aboveground plant communities within separate
patches in a disturbed landscape. We hypothe-
size that any of METE’s individual predictions
might not work for one or both of the different-
aged plots, which would mean that the theory’s
four state variables do not contain adequate
information to constrain the predicted distribu-
tion in question to the empirical distribution. A
signature of disturbance may emerge in the SAR,
z-D relationship, SAD, or SSADs if any of these
metrics fail individually, or fail in some combina-
tion consistently across other disturbed ecosys-
tems. We expect that if SADs are more uneven
and there is increased variation in aggregation
measured by SSADs across species, we can also
expect approximate power law behavior in the
SAR (Wilber et al. 2015). More specifically, with
a lognormal SAD and a Poisson distribution for
the SSAD, Preston’s analysis (1948) indicates that
we would see a power law SAR in the mid-seral
stage plot.
Because METE is constrained to predict the

maximum information entropy distributions
only, the functional forms are fixed after the state
variables are specified. Failures of METE to pre-
dict ecological metrics accurately in rapidly
changing ecosystems would indicate the need to
modify the theory to information that captures
specific ecological processes. Alternately, if an
information entropy-based theory of macroecol-
ogy (METE) performs equally well for both the
mature and disturbed plots, we would have sup-
porting evidence that the information contained
in the four state variables that constrain the pre-
dicted distributions is sufficient to describe gen-
eral patterns in ecosystems, regardless of their
disturbance status. This would suggest that
METE’s successes are independent of the distur-
bance history of an ecosystem, and its predic-
tions may be generalizable across ecosystems in
any successional state.
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MATERIALS AND METHODS

Bishop pines: a forest type that experiences
natural disturbance

This study focuses on Bishop pine (Pinus muri-
cata D. Don) forest stands and their associated
plant communities, which exhibit an unusual
natural history of disturbance-mediated stand
replacement. Bishop pine is endemic to the

California Floristic Province in North America
and has a patchy distribution along the coast of
California, USA, and Baja California, Mexico,
including the California Channel Islands (Millar
1983, 1986, Little 1971, Stephens and Libby 2006;
Fig. 1). Mature stands (~40–120 yr old) may have
individuals that are widely spaced and a moder-
ately diverse understory of forbs and shrubs. The
species produces serotinous cones that remain on

Fig. 1. Map of Point Reyes National Seashore region in central coastal California, USA, showing study plot
location and local distribution of Bishop Pines.
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the tree until exposed to fire, which causes them
to release a large crop of seeds over a short per-
iod of time. In the first few years of succession,
rapid changes in species composition and struc-
ture are observed, and stands generally exhibit
high species diversity (Ornduff and Norris 1997,
Ornduff 1998, Harvey and Holzman 2014, Har-
vey et al. 2014). Mid-sere, stand-replacing fires
cause regeneration of the Bishop pines into a uni-
form age and size-class, a dog-hair forest that is
nearly a monoculture with almost no understory,
in which the dynamics of the stand are domi-
nated by density-dependent mortality (Harvey
and Holzman 2014). Over time, the dense forest
structure that undergoes this self-thinning pro-
cess becomes a more open, lower-density and
higher diversity stand (Harvey et al. 2011, Har-
vey and Holzman 2014). In our study, we focus
on one mature stand of trees and one mid-seral
stage stand with extremely high tree density
within the post-fire site.

Wildfire records and records of management
have been maintained by PRNS since the estab-
lishment of the park in 1962. Brown et al. (1999)
documented relatively frequent wildfires (every
8–9 yr, on average) from the 1700s through 1945
for Olema Valley and general Point Reyes area,
including four large fires in the early 20th cen-
tury (1904, 1906, 1923, and 1945). Of these, we
believe the 1923 fire is the most likely to have
affected our study sites. These fires are thought
to be human-caused, and low-severity rather
than stand replacing. In October 1995, the Vision
Fire, a high-severity (large, infrequent) wildfire,

burned 12,354 acres (5000 ha, or 50 km2) within
the Point Reyes National Park unit (National
Park Service 2005). Our study targets areas
within and outside of the post-fire landscape.

Site descriptions
Field sites were chosen within the boundaries

of PRNS, on the Pacific coast of California, USA,
~50 km northwest of San Francisco. According to
data from 1964 to 2012, PRNS experiences a
Mediterranean-type climate, with mild winters
and cool summers (with most of the ~100 cm
annual rainfall occurring in winter, and a sub-
stantial amount of moisture received from fog
drip in the summers; Dawson 1998, Forrestel
et al. 2015).
We placed 256-m2 study plots in two Bishop

pine (P. muricata) stands and censused each for
all aboveground, live vascular plants ≥1 cm in
height in April 2012 (Table 1). The higher eleva-
tion Bayview plot at 252 m (825 ft) elevation was
placed in an area of PRNS that burned in the
1995 Vision Fire and was previously a Bishop
pine-dominated area (known to influence pat-
terns of succession; Harvey et al. 2011, Harvey
and Holzman 2014). The Bayview plot is a dog-
hair type stand of thin, closely growing trees, in
which the ages of the Bishop Pines are uniform,
and the understory is sparse (Fig. 2). The slightly
lower-elevation Mount Vision plot was located at
213 m (698 ft), 6.1 km (~3.8 mi) away from Bay-
view, in a mature Bishop pine stand with a more
diverse and lush understory (Fig. 2). At each site,
all individual live plants counted with double-

Table 1. Locations and other descriptive metrics for research plots used in this study.

Site name Bayview Mount vision

Latitude/longitude 38.05936°, �122.85071° (�3.6 m) 38.10283°, �122.89338° (�1.8 m)
Elevation 251.5 m (825 ft) 212.8 m (698 ft)
Time since major
disturbance

17 yr No recorded disturbance history since 1923,
although maximum estimated tree age is 48 yr

Slope, aspect 0%, S 62.5%, NE
Tree density/ha 5780 stems/ha 550 stems/ha
Total basal area 48.6 m2/ha 71.9 m2/ha
Trees cored (total
cores obtained)

4; (6) 13; (14)

PRNS catalog
numbers

PORE 18080 through PORE 18083; PRNS
Accession number: PORE-00866

PORE 18084 through PORE 18096; PRNS Accession
number: PORE-00866

Total species (S0) 16 27
Total abundance (N0) 486 1844
Total area (A0) 256 m2 256 m2

Note: PRNS, Point Reyes National Seashore.
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observers, and each plant’s spatial location in the
sampling grid was recorded with a cell number
representing a 1-m2 subdivision of the larger
plot. Plants were identified to species in the field
when possible using the Jepson Manual (Baldwin
et al. 2012) and other field guides for the local
region (Keator and Heady 1981, Howell et al.
2007); or otherwise assigned to morphospecies
(plants with a large number of shared character-
istics that were given a unique species identifier
for analysis with reference notes and pho-
tographs). METE’s predictions are robust to the
lumping or splitting of species, provided that
such decisions are made consistently (Harte et al.
2013).

Patterns of fire severity leading to landscape
heterogeneity are described in Forrestel et al.
(2011), which focused on vegetation succession
and Bishop pine communities following the
October 1995 Vision Fire. Forrestel et al. found
that Bishop pines increased in extent by 85%
within the park and had an altered spatial distri-
bution following this high-severity, stand-replac-
ing fire. Species compositions between plots

cannot be considered different stages of the same
successional trajectory due to beta diversity (Har-
vey and Holzman 2014), but the post-Vision Fire
site lacks the well-developed understory com-
mon to mature stands, and is considered in a
state of ongoing succession for our purposes.
We believe that the disturbance history of the

sites is responsible for generating the macroeco-
logical patterns of interest, because the diverse,
open understory mature forests only exist out-
side the fire-affected area, whereas within the
boundaries of the Vision fire, all Bishop pine
stands have the dog-hair, dense, and low-diver-
sity structure. As we are interested primarily in
species richness, abundance structures, and spa-
tial clustering of species (that is, ratios of S0 to
A0, and of N0 and S0, and relationships between
the total abundance of a given species and A0), it
is clear that the disturbance history is the pri-
mary reason for the differences between sites.

Establishing disturbance histories
Four and 13 live trees were cored at Bayview

and Mount Vision sites, respectively, using

a b

c d

Fig. 2. Photographs of (a) interior of mature Bishop pine stand at Mount Vision site, and (b) side view of
mature stand; (c) interior view of Bishop pine stand that burned in the 1995 Vision Fire at Bayview plot, and (d)
exterior view of stand structure 17 yr after the Vision Fire.
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increment borers (Hagl€of Sweden). Cores ages
were estimated using an age–height correction
(Appendix S3), for all cored trees in each plot.
Results were corroborated with aerial pho-
tographs of this area in the PRNS archive. We
examined land-use history records (including
aerial photographs, contemporary accounts, his-
torical ranch maps, and post-wildfire incident
records) in the archives at PRNS, in consultation
with National Park Service archival staff. Other
fire records examined include CALFIRE’s
Department of Forestry and Fire Protection
FRAP Fire Perimeters (available online at http://
frap.cdf.ca.gov/data).

The maximum information entropy approach
Plant census data from multiple plots within

the PRNS Bishop pine community were used to
test METE predictions for the SAR and the
related z-D universal scale collapse relationship,
a Fisher log-series SAD, and a geometric distri-
bution for each SSADs. Shannon information
entropy is maximized with respect to two prede-
termined constraints, which are the ratios of state
variables (Brummer and Newman 2019). Solu-
tions to information entropy maximization take
the form of the Lagrange multipliers k1 and k2,
and these values capture information from the
empirical system and are used in throughout
METE’s predicted metrics. Here, k1 = b-k2 and
k2 = S0/(E0�N0); and b satisfies the approximate
relationship:

b ln
1

1� e�b

� �
� S0

N0
(1)

Additional information on METE’s predicted dis-
tributions is available in Appendix S4.

For SAR and z-D scale collapse model compar-
isons, we compare models with R2 values
derived from one-to-one predicted vs. observed
graphs (White et al. 2012: Appendix A), because
no method is available to generate likelihood
functions required for Akaike’s information crite-
rion (AIC) comparisons. For comparison to the
commonly used power law SAR (Brown et al.
2002, White et al. 2008), best-fit power laws were
calculated from the SAR data for each site and
applied to the SAR and z-D graphs. If the SAD is
uneven and there is increased variation in aggre-
gation in the SSAD across species, approximate
power law behavior is expected in the SAR

(Wilber et al. 2015). Models for SADs and SSADs
were generated and compared to candidate dis-
tributions using Akaike’s information criterion
value corrected for small sample sizes (AICc).
Macroecological analyses were carried out in

Python (van Rossum and Drake 2001) with the
open-source software macroeco (Kitzes et al.
2014, Kitzes and Wilber 2016). Although macroeco
is programmable through a stand-alone graphi-
cal user interface, Python code can be used to
reproduce analyses as well and is presented here
with data from this study in Data S1. SAR, SAD,
and SSAD scripts were available from the beta
version of this software (accessed June 2015).
Other analyses were carried out in R versions
3.0.1 and 3.1.1 (R Core Team 2013–2015).

RESULTS

Summary statistics and calculated parameters
A total of 2330 individual plants in 32 species

were censused across the two study plots. Spe-
cies richness and abundances differed greatly
between the plots (Table 1; Appendix S5). The
Bayview plot, which burned in 1995, was sur-
veyed at 17 yr after the Vision Fire and contained
16 species and a total of 486 individuals (148 of
which were Bishop pines). Six tree cores had esti-
mated ages from 11 to 16 yr (mean = 15.2 yr,
mode = 16 yr). Density of Bishop pines in this
plot was measured to be 0.578 trees/m2 (or
5780 stems/ha). The Mount Vision plot contained
27 species and 1844 individuals total (14 of which
were Bishop pines). Bishop pine density in this
plot measured 0.055 trees/m2 (or 550 stems/ha),
including the very few seedling trees in the plot.
Live tree density estimates are consistent with
estimates from other studies (Harvey et al. 2011,
2014). Trees varied in age from an estimated 40–
48 yr old (mean = 43.5 yr, mode = 41 yr, which
implies that some management, grazing, or log-
ging activity was not recorded in the PRNS
archives). In both plots, Bishop pines were the
only tree in the overstory and were the largest
plants in each plot by estimated biomass. See
Appendix S5 for species observed in each plot,
and other supporting analyses.
For comparison to METE-predicted metrics,

we calculated the value of the parameter
b = 6.515 9 10�3 for the Bayview plot for the
measured values N0 = 486, S0 = 16, and
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b = 2.429 9 10�3 for the Mount Vision plot, with
measured values N0 = 1844, S0 = 27. The values
for the Lagrange multipliers k1 and k2 are not
independently calculable because state variable
E0 was not measured for either plot.

Species–area relationship and scale collapse
Generally, the METE prediction for the SAR

appears to be a good fit for both data sets,
whereas the z-D (scale collapse) graphs show
more deviation from the METE prediction for the
mid-seral stage Bayview plot (Fig. 3). To

determine the best model fits for the SAR, com-
parisons of R2 values on a one-to-one line for pre-
dicted vs. observed distributions (White et al.
2012) were carried out for both the Bayview and
Mount Vision plots. Best-fit power laws were
plotted on SAR and z-D graphs (Fig. 3 a-b, d-e).
R2 values on ranked data are generally always
high. R2 values for the mature Mount Vision plot
support METE’s predicted SAR over the best-fit
power law predictions (R2

METE = 0.991;
R2
PowerLaw = 0.989), whereas the power law fit is a

better fit for the mid-seral stage Bayview plot

Fig. 3. Species–area relationships (SARs), z-D universal scale collapse graphs, and species abundance distribu-
tions (SADs) for the mid-seral stage Bayview plot (a, b, and c, respectively), and for the mature Mount Vision plot
(d, e, and f, respectively). For the SARs, empirical data are shown against the Maximum Entropy Theory of Ecol-
ogy (METE) upper-truncated geometric (ut-geo) prediction, and the best-fit power law for comparison. Universal
scale collapse graphs, with METE-predicted and observed values, illustrated at scales of N/S (total abundance/to-
tal species) on a log scale for each plot. The best-fit power law is shown again for comparison. Empirical and
METE-predicted ranked species abundance distributions (SADs) are shown against lognormal distributions for
comparison.
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(R2
METE = 0.977; R2

PowerLaw = 0.998) on a ln-ln
graph. The deviations in model fits to data are
clearer in the z-D graphs, confirming the better
fit of the METE-predicted distribution over the
best-fit power law for the mature plot, and a
more power law-like fit for the more recently dis-
turbed, mid-seral stage Bayview plot.

Species abundance distribution
Model selection comparing AICc values for

both the Bayview and Mount Vision plots in both
cases support the METE-predicted log-series dis-
tribution over the lognormal distribution
(Table 2) that is often associated with disrupted
or perturbed systems. ΔAICc = 5.149 between
the models for Bayview, and ΔAICc = 3.717 for
Mount Vision. On visual inspection of the SAD
graphs (Fig. 3 c, f), there is the pattern of sup-
pression of mid-abundance species in the Bay-
view plot that may be characteristic of disturbed
or disrupted communities, but which is not cap-
tured by either the log-series or lognormal distri-
bution. The METE log series does not model this
deviation, but because it accurately fits the num-
ber of singleton species and the abundance of the
single most common species in this distribution,
it wins out over the lognormal distribution in
AICc comparisons.

Species–level spatial abundance distributions
Species-level spatial abundance distributions

were calculated for all species with n ≥ 4, com-
prising 21 species in the older Mount Vision plot,
and 10 species in the disturbed Bayview plot
(Appendix S5). In Fig. 4, two alternate ways of
presenting the same data are shown using one
species (TRIBOR) as an example; first, a rank-
abundance plot (where rank is inversely related
to plant abundance in a cell), and second, a
cumulative density function. AICc comparisons

between two candidate distributions for the
SSAD: The binomial and METE ut-geometric
predictions for species in the mid-seral Bayview
plot and Mount Vision mature plot are summa-
rized in Appendix S5. Higher AICc weights cor-
responding to better model fits, and number of
wins were tallied for model fits in each case
(Fig. 5).
For the mid-seral stage Bayview plot, SSADs

have AICc values supporting a binomial distri-
bution in eight of 10 cases, with the two remain-
ing cases supporting METE ut-geometric
distribution. Bishop pine is one of the species
with a distribution that is best described by the
METE prediction, with next best-supported
model having ΔAICc = 3.851. For the Mount
Vision mature plot, we find the opposite pattern:
AICc values support a binomial distribution in
eight cases, and 13 cases support METE ut-geo-
metric distribution (Fig. 5). The spatial distribu-
tion of Bishop pines in the Mount Vision site is,
as in the Bayview plot, better described by the
METE ut-geometric distribution, with the next
best-supported binary model having somewhat
less explanatory power (ΔAICc = 1.506). A Pear-
son’s chi-squared contingency test on the distri-
bution of wins indicates that the difference
between SSADs at Bayview and Mount Vision is
statistically significant at the 95% confidence
level.

DISCUSSION

Predicted and empirical distributions in different-
aged stands
This study demonstrates how macroecological

approaches may inform disturbance ecology.
Macroecological predictions of METE perform
well in the mature stand in a disturbance-depen-
dent community for the SAR, SAD, and the SSAD

Table 2. Model comparisons of candidate species abundance distributions (SADs) for the Bayview (disturbed)
and Mount Vision (mature) plots.

Plot Model k AICc ΔAICc wi

Bayview Lognormal 2 125.3246 5.1485 0.0708
METE log series 1 120.1761 0 0.9292

Mount vision Lognormal 2 271.9128 3.7173 0.1349
METE log series 1 268.1956 0 0.8651

Notes: METE, Maximum Entropy Theory of Ecology. Here and following, k = number of parameters in model;
AICc = Akaike’s information criterion value corrected for small sample sizes; wi = AICc weight (a measure of strength of evi-
dence for each model); ΔAICc = difference of AICc value compared to the next best-supported model.
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of both the dominant species (Bishop pine) and
most of the other species in the plant community,
compared to other candidate distributions. These
results conform to our expectations, because the
mature (Mount Vision) stand exhibits similar con-
stancy and demographic stability to the Smithso-
nian plots where METE has proven successful
previously (Harte et al. 2008, Harte 2011, Xiao
et al. 2015). METE predictions have variable and
lower success in the mid-seral stage Bayview plot,
with the SAD better predicted by METE (com-
pared to the lognormal), but with the SAR and z-
D plots better described by a best-fit power law,
and the SSADs in aggregate better described by
the binomial distribution.

We expected that if SADs are more uneven and
there is increased variation in aggregation in the
SSAD across species, that we would see approxi-
mate power law behavior in the SAR (Wilber
et al. 2015). In this study, we measured a more

uneven SAD and some variation in the SSAD
aggregation in the mid-seral stage Bayview plot
and did in fact find power law-like behavior of
the SAR there. We also found that this more
recently disturbed Bayview plot had a Poisson
spatial distribution of abundances (SSAD) for
most species. This pattern is consistent with null
model describing a post-disturbance landscape
with opportunities for species to colonize with
equal probability anywhere (noting that the colo-
nization by Bishop pines would have taken place
immediately post-fire). In contrast, the mature
plot deviates from Poisson SSADs and has more
highly aggregated METE-like SSADs. This points
to other ecological processes than colonization
being responsible for generating these patterns.

Deviations from METE's predicted distributions
The Maximum Entropy Theory of Ecology’s

predictions are most effective in steady-state

Fig. 4. Species-level spatial abundance distribution (SSAD) example. The species shown is Trientalis borealis
(TRIBOR) from the Mount Vision plot. In this example, the Maximum Entropy Theory of Ecology (METE) upper-
truncated (ut) geometric prediction is compared to other candidate distributions: the binomial and the Poisson.
The METE ut-geometric distribution is equivalent to a finite negative binomial distribution with a support
parameter of k = 1. Here, the binomial and Poisson distributions give the same predictions for the SSAD. The
Poisson and binomial predictions give the similar results for each of the SSADs tested; this is because both mod-
els correspond to a null hypothesis of random placement, although the binomial has finite support and the Pois-
son is calculated with infinite support. Because both the binomial and the METE ut-geometric have finite support
and the same number of parameters, Akaike's information criterion comparison between the two distributions is
strictly based on the likelihood component. METE SSAD predictions are therefore compared to corresponding
binomial distributions throughout the manuscript.
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systems in which detection rates for the taxa
studied are high, but like many forms of macroe-
cology (Fisher et al. 2010), the current ASNE for-
mulation does not account for transient
dynamics. It therefore does not provide a full
accounting of disturbance ecology and distur-
bance dynamics, but it can provide robust, quan-
titative descriptions of the pre- and post-
disturbance community. Our results from two
sites are consistent with the idea that ecological
perturbation may result in lognormal SADs
(although we only found deviation, not lack of
AIC support), and suggest that the SAD may be
transformed through successional stages from a
geometric shape through a lognormal to a log
series (Bazzaz 1975, Whittaker 1975). It is also
apparent that time since disturbance affects the
shape of the SAD and various other metrics in
this study, including the shift of SSADs from the
binomial toward the METE ut-geometric. This
pattern may be consistent with other forms of
spatial clustering of species during transitional
phases (K�efi et al. 2007) and is consistent with

shifts in the overall metacommunity (McGill
2010) following disturbance.
We believe that deviations from METE’s pre-

dicted SAD and the more binomial-type SSAD
distributions for the general plant community in
the younger stand of Bishop pines are likely
explained by a lack of steady-state dynamics. As
an information entropy-based statistical frame-
work that employs state variables to describe the
macrostate of an ecosystem or plot within that
ecosystem, the static ASNE version of METE and
the MaxEnt mathematics underlying it automati-
cally optimize for distributions that maximize
information entropy. The predicted state there-
fore always corresponds to a steady-state solu-
tion. The fixed, maximized information entropy
distributions METE predicts for a given set of
state variables likely closely correspond to
mature biological communities experiencing
very little demographic fluctuations or other
large shifts in community composition over time.
This in turn may explain why METE works bet-
ter for the mature stand than for the younger,

Fig. 5. Bar plots comparing number of wins between species-level spatial abundance distribution (SSAD)
models for all species, based on AICc weights. Binomial distributions are better fits to data from more species in
the mid-seral stage and more recently disturbed Bayview plot, whereas Maximum Entropy Theory of Ecology
upper-truncated geometric (ut-geo) models are better fits overall for species in the mature Mount Vision plot. A
Pearson's chi-squared contingency test on the distribution of wins indicates that the difference between SSADs at
Bayview and Mount Vision is statistically significant at the 95% confidence level (chi-squared = 4.763, df = NA,
P = 0.05; simulated P-value based on 2000 replicates).
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more recently disturbed stand still undergoing
succession in this study. However, it still leaves
open the questions of how macroecology can
account for disturbance in ecosystems, and what
implications this has for predicting their ecologi-
cal effects.

Other examples of notable deviations from
METE’s predictions have been observed in the
Barro Colorado Island forest plot, in a drought-
affected Rocky Mountain meadow (Newman
et al. 2014), and in some Hawaiian arthropod
communities (Rominger et al. 2016, Harte et al.
2017). For the Barro Colorado Island plot, tree
and seed-disperser extirpation on the island fol-
lowing its isolation from the mainland was a con-
sequence of the construction of the Panama
Canal. Time since isolation has been associated
with an increasingly lognormal SAD. The lognor-
mal SAD is also observed in the Rocky Mountain
meadow during a period of unusual drought
and high temperatures leading to a novel com-
munity of wildflowers that exhibited irregular
phenology (Newman et al. 2014). In the Hawaii
case, the SAD shows higher-than-predicted num-
bers of singleton species. Deviation from the
METE in this case may be caused by dispersal
limitation and the relatively young age of the
community (Rominger et al. 2016). In each case,
ecological context suggests that these systems are
far from steady-state dynamics or missing a key
ecological constraint, and provides insight into
the ecological patterns observed.

Unifying macroecology with disturbance ecology
To our knowledge, no macroecological studies

have focused on patterns in species diversity,
spatial, and abundance distributions in natural
disturbance regimes. This study examines two
very different successional states in a distur-
bance-dependent ecosystem to identify the dif-
ferences between METE’s predictive abilities in
communities with different disturbance histories.
By showing precisely how sites with known,
recent disturbance histories depart from the pre-
dictions of the current formulation of METE, we
set the stage for explicit or implicit extensions of
the theory and its application to a wider range of
ecosystems, including those in states of rapid
change, those with repeated natural disturbance,
and those that experience combinations of natu-
ral disturbances and anthropogenic disruptions.

We show that at the plot-scale, METE predic-
tions are generally better supported for the more
mature, less rapidly changing plot that for the
more recently disturbed plot that is low diversity
and undergoing a period of density-dependent
mortality. However, examining single succes-
sional states and comparing them, as we do here,
may not be sufficient to produce METE-based
generalizations of disturbance-dependent ecosys-
tems. For example, a simple relationship such as
“the more disturbed, the farther from METE pre-
dictions” may fail because of non-linear relation-
ships between ecological processes and
constraints on state variables (Hamer and Hill
2000, Xiao et al. 2016). A possible solution is to
take a step back and look at a broader landscape
scale (~50,000–100,000 ha) that comprises multi-
ple patches with different disturbance histories.
Although census information for this scale is gen-
erally lacking (and part of the motivation to study
macroecology; Brown 1995), a fruitful approach
to characterizing disturbance-prone ecosystems is
better taken at scales larger than the spatial extent
of disturbance events such as large fires and insect
outbreaks. Without needing the transient dynam-
ics (e.g., fire behavior, stand-level gap replace-
ment) that apply at fine scales, it is possible that
the ASNE version of METE may be applied suc-
cessfully, as a form of snapshot ecology, to patches
within a disturbed landscape to characterize
zones of different ages and disturbance histories.
Maximum Entropy Theory of Ecology has been

demonstrated to work across several orders of
magnitude up to the largest scale of ecosystems
(Harte et al. 2009, Harte 2011, White et al. 2012,
Harte and Kitzes 2015). Measuring state variables
from multiple patches at different successional
stages will provide more constraining information
for METE metrics and may lead to better predic-
tions of the SAR and SAD. The scaling of macroe-
cological metrics may even provide insight into
the scales at which disturbance-dependent ecosys-
tems deviate most dramatically from METE pre-
dictions (Hamer and Hill 2000, McGill 2010), as
patterns in disturbance-dependent landscapes are
known to be scale-dependent (Wu 2004). These
patterns may also change between landscapes
affected by large, infrequent disturbances (as in
this study) and those affected by small, frequent
disturbances (Romme et al. 1998, Turner and Dale
1998).
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